
Grant Agreement No.: 761488

D3.4: Technology Bricks V3

This deliverable provides the technology bricks which have been planned for the third prototype of the

CPN platform.

 D3.4: Technology Bricks V3|Public

Page 2 ©Copyright ATC and other members of the CPN Consortium 2019

Work package WP 3

Task

Due date 31/10/2019

Submission date 27/12/2019

Deliverable lead ATC

Version Final

Authors Thomas Sounapoglou, Eva Jaho (ATC)

Reviewers Ferdinando Bosco (ENG)

Keywords Technology Bricks, APIs, prototype 3

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 15/10/2019 Table of Contents Thomas Sounapoglou (ATC)

V0.w 29/10/2019 Initial version Thomas Sounapoglou, Eva Jaho (ATC)

V0.3 10/12/2019 First completed version Thomas Sounapoglou, Eva Jaho (ATC),

Ferdinando Bosco (ENG), Matthias Strobbe,

Chris Develder, Thomas Demeester,

Johannes Deleu (IMEC), Fulvio D’Antonio

(LIVETECH), Robert Learney, Daniel

Puschmann, Anthony Garcia (DCAT),

V0.4 16/12/2019 Final edits Thomas Sounapoglou (ATC), Ferdinando

Bosco (ENG)

V0.5 20/12/2019 Reviewed version Ferdinando Bosco (ENG)

V1.0 27/12/2019 Completed version

incorporating all

comments received

Thomas Sounapoglou (ATC)

 D3.4: Technology Bricks V3|Public

Page 3 ©Copyright ATC and other members of the CPN Consortium 2019

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any use that may

be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any use that may

be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to CPN project and Commission Services

 D3.4: Technology Bricks V3|Public

Page 4 ©Copyright ATC and other members of the CPN Consortium 2019

EXECUTIVE SUMMARY

This deliverable reports on the work performed in WP3, which addresses the development of the required

technology bricks for the CPN platform. The input to this document were the deliverables D1.1 “User

Requirements Model”1 and D1.4 “Technical Requirements (platform and service requirements)”2. The

scope of this document is to report the components and services implemented for the third prototype of the

platform. As defined by the project’s requirements, these components and services are classified in three

categories: Content, Users, Mapping.

For each technology brick, a brief description of its functionality is provided, along with existing API, test

scenarios and installation guidelines.

1 https://www.projectcpn.eu/s/CPN_D11_User-Requirements_201802028_V10-2pkf.pdf
2
https://www.projectcpn.eu/s/CPN_D14_Technical_requirements_platform_and_service_requirements_20180830
_v10.pdf

 D3.4: Technology Bricks V3|Public

Page 5 ©Copyright ATC and other members of the CPN Consortium 2019

TABLE OF CONTENTS

DISCLAIMER 3

EXECUTIVE SUMMARY 4

TABLE OF CONTENTS 5

LIST OF TABLES 8

LIST OF FIGURES 8

ABBREVIATIONS 8

1. INTRODUCTION 10

2. SUMMARY OF REQUIREMENTS FOR PROTOTYPE 3 11

3.1.3 Internal Architecture 18

3. NEW MODULES DESCRIPTION 19

3.1 Fine Grained Entity Recognition Module 19

3.1.1 Overview 19

3.1.2 Role 19

3.1.4 API 20

Input data 20

Output data 20

3.1.5 Testing Scenarios 23

3.1.6 Conclusion and Overview of Research Findings 23

3.1.7 Installation and administration guidelines 24

3.2 Distribution Framework 24

3.2.1 Overview 24

3.2.2 Role 25

3.2.3 Internal Architecture 26

3.2.4 APIs 26

3.2.5 Testing Scenarios 27

3.2.6 Installation and administration guidelines 27

4. UPDATES ON AVAILABLE BRICKS 28

4.1 User Modelling 28

4.1.1 Overview 28

4.1.2 Role 28

4.1.3 Internal Architecture 29

4.1.4 API 29

 D3.4: Technology Bricks V3|Public

Page 6 ©Copyright ATC and other members of the CPN Consortium 2019

4.1.5 Testing Scenarios 31

4.1.6 Installation and administration guidelines 31

4.2 Recommender 31

4.2.1 Overview 31

4.2.2 Role 31

4.2.3 Internal Architecture 32

4.2.4 API 32

4.2.5 Testing Scenarios 34

4.2.6 Installation and administration guidelines 34

4.3 Topic Extractor 34

4.3.1 Overview 34

4.3.2 Role 34

4.3.3 Internal Architecture 35

4.3.4 API 36

4.3.5 Testing Scenarios 36

4.3.6 Installation and administration guidelines 36

4.4 Recommender A/B Testing 36

4.4.1 Overview 36

4.4.2 Role 37

4.4.3 Internal Architecture 37

4.4.4 API 39

4.4.5 Testing Scenarios 40

4.4.6 Installation and administration guidelines 41

4.5 Reader's App 42

4.5.1 Overview 42

4.5.2 Internal Architecture 42

4.5.3 Mobile Application 43

4.5.4 Smart Speaker 47

4.5.5 Installation 48

4.6 Personal Data Receipt 48

4.6.1 Overview 48

4.6.2 Role 48

4.6.3 Internal Architecture 49

 D3.4: Technology Bricks V3|Public

Page 7 ©Copyright ATC and other members of the CPN Consortium 2019

4.6.4 API 49

4.6.5 Testing Scenarios 51

4.6.6 Installation and administration guidelines 51

4.7 Producer's App 51

4.7.1 Overview 51

4.7.2 Role 53

4.7.3 Internal Architecture 53

4.7.4 API 53

4.7.5 Testing Scenarios 54

4.7.6 Installation and administration guidelines 54

5. CONCLUSIONS 54

6. REFERENCES 54

 D3.4: Technology Bricks V3|Public

Page 8 ©Copyright ATC and other members of the CPN Consortium 2019

LIST OF TABLES

Table 1: List of Requirements for the third Prototype .. 16

Table 2: Technology Bricks for Prototype 3 .. 17

LIST OF FIGURES

Figure 1: Schematic Overview of the Fine Grained Entity Recognition Module... 18

Figure 2: Architecture schema of the Distribution Framework module ... 26

Figure 3: Reader's App consumers.. 42

Figure 4: Login Layout ... 43

Figure 5: Main Layout ... 43

Figure 6: Deactivate or activate again the personalized information feature .. 44

Figure 7: Characterize an article as "interesting" ... 44

Figure 8: Voice Commands ... 45

Figure 9: Text to speech button .. 46

Figure 10: UX adapted for DIAS media partner .. 46

Figure 11: Smart speaker launched for a logged in user - simulation node ... 48

Figure 12: Architecture Schema for Personal Data Receipt module .. 49

Figure 13: Overview on the data collected ... 52

Figure 14: Trending topics for a specific news provider ... 52

Figure 15: Tag an article as "breaking news" .. 53

ABBREVIATIONS
API Application Programming Interface

ATC Athens Technology Center

CPN Content Personalization Network

DCAT Digital Catapult

DW Deutsche Welle

ENG Engineering Ingegneria Informatica

GDPR General Data Protection Regulation

GUI Graphical User Interface

IMEC Interuniversity MicroElectronics Center

JSON JavaScript Object Notation

JWT JSON Web Token

file:///C:/Users/thomas/Desktop/D3.4/D3.4%20Technology%20Bricks%20V3_v0.5.docx%23_Toc28198479
file:///C:/Users/thomas/Desktop/D3.4/D3.4%20Technology%20Bricks%20V3_v0.5.docx%23_Toc28198480
file:///C:/Users/thomas/Desktop/D3.4/D3.4%20Technology%20Bricks%20V3_v0.5.docx%23_Toc28198481
file:///C:/Users/thomas/Desktop/D3.4/D3.4%20Technology%20Bricks%20V3_v0.5.docx%23_Toc28198483
file:///C:/Users/thomas/Desktop/D3.4/D3.4%20Technology%20Bricks%20V3_v0.5.docx%23_Toc28198485

 D3.4: Technology Bricks V3|Public

Page 9 ©Copyright ATC and other members of the CPN Consortium 2019

NLP Natural Language Processing

RDF Resource Description Framework

REST Representational State Transfer

RSS RDF Site summary

UI User interface

UR User requirement

VRT Vlaamse Radioen Televisieomroep

YAML YAML Ain't Markup Language

 D3.4: Technology Bricks V3|Public

Page 10 ©Copyright ATC and other members of the CPN Consortium 2019

1. INTRODUCTION

This Deliverable contains the basic description of the technological infrastructure of the third prototype of

the CPN platform, which is composed by what we call 'technology bricks'. The components, APIs, and

services included in the third version of the platform customization infrastructure and components, and

described in this deliverable have been designed and developed according to the user requirements, as

described in deliverable D1.1 “User Requirements Model”.

The CPN project foresees three releases of the 'technology bricks' in order to be available for the related

pilots. Each release includes specific functionalities, chosen after a process of evaluation and prioritization

of the user requirements. Based on the reference architecture document (D2.1)3 and the second version of

the technology bricks deliverable (D3.3)4, the third version of the technology bricks is the third and the

final cycle of three iterations and will offer a series of features in order to test the related bricks in a pilot

(third Pilot) environment.

The main goal of this document is to present the technology bricks that are foreseen at this point of the

project necessary to satisfy the user requirements expected for the third pilot iteration. For each technology

brick, a brief description of its functionality is provided, along with any existing APIs, test scenarios and

installation guidelines. In addition to the new technology bricks implemented, this deliverable also

describes the updates of the already deployed technology bricks, highlighting new features implemented

and how these bricks satisfy the user and technical requirements.

For each technology brick described in this document, a follow up of the comments received from the

Reviewers during the second Review of the project is provided.

The structure of the deliverable is organized as follows: Section 2 provides an overview of the requirements

for the third prototype, Section 3 describes the new CPN technology bricks that are introduced for the 3rd

prototype of the platform, Section 4 provides updates of the already available technology bricks, and

Section concludes this document.

3 https://www.projectcpn.eu/s/D21-CPN-Reference-Architecture-v10.pdf
4 https://www.projectcpn.eu/s/D33-Technology-Bricks-V2.pdf

 D3.4: Technology Bricks V3|Public

Page 11 ©Copyright ATC and other members of the CPN Consortium 2019

2. SUMMARY OF REQUIREMENTS FOR PROTOTYPE 3

The requirements foreseen for the third prototype along with the list of the modules that have been necessary

for satisfying these requirements are enlisted below.

Note that some requirements are discarded according to document D6.5 2nd Review Periodic Report.

Requirement category
Requireme

nt ID
Requirement
Description

Notes

UR-UP 1: Interests
(Categories, Entities,

Values): What topics is
the user interested in?

UR-UP 1.3

The system
should be able

to offer
personalized

content on the
basis of the

users mood or
values

The system should be
able to offer personalized

content on the basis of
the users mood or values

UR-UP 4.1

The system
must allow the
user to choose
preferred types

of content

Discarded: Having
different media types

has been evaluated
too technically

complicated, so we
decided to focus on

the text first.

UR-UP 4.2

The system
should

set/refine
preferred types

of content
based on the

user’s
consumption

habits and the
timing

UR-UP 4.3

The system
should refine

the user’s
preferred types

of content
through
frequent

interaction with

 D3.4: Technology Bricks V3|Public

Page 12 ©Copyright ATC and other members of the CPN Consortium 2019

the user
(talkback)

UR-UP 6: Knowledge
(Management): What
does the user already

know?

UR-UP 6.4

The system
should be able

to offer insights
and advice

based on what
it learn about
what a user

consumed in
relation to a

certain entity
(e.g. a place)

UR-UP 6.5

The system
should allow
the user to

delete part of
the systems

knowledge for
specific time

frames back in
time from the

moment of
viewing

UR-UP 7: Devices: On
what device is the user

consuming content?

UR-UP 7.1 The system
should check on
what device the

user is
consuming the

content

UR-UP 7.2 The system
should adjust its

content
offering based
on the type of

device the user
is using

UR-UP 7.3 The system
should try to

make smart use
of device data
to determine

the
surroundings of

the user and

Discarded: Using the
device's sensor is out

of scope

 D3.4: Technology Bricks V3|Public

Page 13 ©Copyright ATC and other members of the CPN Consortium 2019

adjust the
content
strategy

accordingly

UR-UP 8: Importance for
user: What is relevant for

the user, outside their
given interests?

UR-UP 8.1

The system
should combine
reading habits

and knowledge
about the user

to provide
smart updates
on things the
user could be
interested in,

even if this
doesn’t fit
his/her set
interests

Discarded: This user
requirement has been
discarded due to the
lack of data collected
about the users to
enrich their profiling.
Social media
networks become
huge private
marketplaces and
only twitter continues
to be open and
transparent.

UR-UP 8.3

The system
should be able
to surprise the

user with
content, he/she
would not have

chosen
themselves

UR-UP 9: User Profile
Management: Giving the

user transparency and
control over their data

UR-UP 9.6

The system
should allow

the user to add
external data to

update their
profile

UR-AF 1: Bursting the
Filter Bubble: How can

CPN avoid filter bubbles
and echo chambers?

UR-AF 1.1

The system
should offer

users an
overview of

other sources,
covering the
same topic

Discarded: This was
deemed unnecessary

as every user is
attached to a single

source

UR-AF 1.3

The system
should offer the

user an easy
overview of

what content
from which

 D3.4: Technology Bricks V3|Public

Page 14 ©Copyright ATC and other members of the CPN Consortium 2019

sources he has
consumed over
a certain period

of time

UR-AF 3: Content/Format:
In which way do we have

to prepare content for
the user?

UR-AF 3.2

The system
should offer the

user a short
overview of all

important
headlines at a

specific point in
time with

access to more
details upon

request

UR-AF 5: Transparency:
Giving the user control &
understanding over the

content he sees

UR-AF 5.3

The system
must make it

transparent to
the users why

they are shown
certain content,

based on an
item level

UR-AF 6: Archive: Making
content available beyond

the moment
UR-AF 6.4

The system
should be able
to memorize
where a user
left off and

restart at the
same point

UR-AF 7: User Feedback:
Asking users to help
improve the system

UR-AF 7.1 The system
should offer

user feedback
requests in a

playful/entertai
ning way

UR-AF 7.3 The system
should allow

users to assign
both existing or
new attributes

(categories,
moods etc.) to a

content item

 D3.4: Technology Bricks V3|Public

Page 15 ©Copyright ATC and other members of the CPN Consortium 2019

UR-AF 7.4 The system
should be able

to offer a
feedback

interaction to
determine the
ground level of
personalization
based on mood,

time and
interest

UR-PS 1: Detailed
Analytics: Giving

Newsrooms a more
detailed feedback on

their audience

UR-PS 1.4

The system
should be able
to show these

numbers during
the creation

process of the
content

UR-PS 2: Integration:
How should CPN be

connected to the
production side?

UR-PS 2.1

The system
should allow for

an easy
integration into
the producers

workflow

UR-PS 2.2 The system
should provide

contract
templates to

allow
freelancers to

easily work
together and

with editors, to
define and track

the scope of
individual

contributions
and expected

revenues

UR-PS 2.3 The system
should allow
producers to
transparently
see how often

their

 D3.4: Technology Bricks V3|Public

Page 16 ©Copyright ATC and other members of the CPN Consortium 2019

The third prototype of the CPN platform introduces two new bricks and updates seven more as follows:

contributions
are used and
distributed to

readers

UR-PS 2.4 The system
should allow
producers to

export the
record of their

publications
through

standardized
and

interoperable
formats

UR-PS 2.5 The system
should allow for

an easy
contribution of
content from

different
publishers

through
standardized

interfaces

Discarded: In
agreement with user

media partners,
content editing

within the dashboard
in no longer

expected. They prefer
to have control over
the editing in their

environment

UR-PS 2.7

The system
should allow

editors to easily
add missing
attributes to

articles
manually

Discarded: In
agreement with user

media partners,
content editing

within the dashboard
in no longer

expected. They prefer
to have control over
the editing in their

environment
Table 1: List of Requirements for the third Prototype

 D3.4: Technology Bricks V3|Public

Page 17 ©Copyright ATC and other members of the CPN Consortium 2019

Layer Name Status

Content
Technology Bricks

Fine Grained Entity Recognition Module New

Topic Extractor Updated

Recommender AB-Testing Updated

User Technology
Bricks

User Modelling Updated

Reader’s App Updated

Personal Data Receipt Updated

Mapping
technology Bricks

Distribution Framework New

Producer’s App Updated

Recommender Updated
Table 2: Technology Bricks for Prototype 3

 D3.4: Technology Bricks V3|Public

Page 18 ©Copyright ATC and other members of the CPN Consortium 2019

3.1.3 Internal Architecture

This section provides a brief overview of the information extraction model and its global neural network

architecture. More details on the model, multiple alternatives, and details on the different components can

be found in the technical report.

Figure 1: Schematic Overview of the Fine Grained Entity Recognition Module

A schematic overview is shown in the figure above. The model is organized as follows (see figure, from

bottom to top):

 D3.4: Technology Bricks V3|Public

Page 19 ©Copyright ATC and other members of the CPN Consortium 2019

3. NEW MODULES DESCRIPTION

This section describes the modules needed to implement the third prototype of the CPN platform.

3.1 Fine Grained Entity Recognition Module

3.1.1 Overview

The fine-grained entity recognition module involved building a dataset, designing information extraction

algorithms, and actually training and evaluating models to automatically enrich news articles.

This document gives an overview of the research for this module performed at the IDLab research group

of Ghent University - imec, and is accompanied by an extensive technical report. That report provides an

overview of the newly created dataset, its unique properties, the models developed for various information

extraction tasks on the dataset, as well as experimental results. In parallel, scientific publications are being

prepared on the dataset as well as the new models, to be submitted early 2020.

3.1.2 Role

The goal of the fine-grained entity recognition module is information extraction on news articles. Within

the CPN project, the extracted facts (fine-grained named entities, as well as relations among them) are

available as structured features for enhancing the content-based part of the recommendation engine. Besides

that, they could support a better navigation through the data or be used for visualization purposes.

 The token representation component (BiLSTM in figure), a bidirectional LSTM layer, reads in the

text and generates a contextual representation for each token.

 The entity prediction component (NER loss in figure) uses this representation to decide where named

entities are located in the text and what their types are.

 The mention representation component (mention vectors in figure) uses the predictions of the

previous component to create a single representation per entity span.

 The entity clustering component (coref loss in figure) uses the mention representations to predict

which mentions are clustered together, as they denote the same entity

 The entity representation component (concept vectors in figure) uses the predictions of the entity

clustering component to generate a single entity vector per cluster

 The relation prediction component (relation loss in figure) decides for all pairs of entities which of

the predefined relations -- i.e., none, one, or more -- they are engaged in.

 D3.4: Technology Bricks V3|Public

Page 20 ©Copyright ATC and other members of the CPN Consortium 2019

The research performed for this task involved (i) building a new annotated dataset with English content

from Deutsche Welle, and (ii) designing suitable information extraction models for it. The dataset has a

number of unique properties that set it apart from existing information extraction datasets. For example, it

is a random sample from an actual online news corpus (rather than a manually crafted composition of

articles for more academic information extraction research), and rather than focusing on the sentence level,

it considers the entire document for defining named entities and relations between them. This opens up the

potential for more robust information extraction, but comes with additional technical challenges.

3.1.4 API

The following API description applies to the proof-of-concept software available as a Docker image

published on CPN private Docker registry.

Input data

To process a news article, a request is sent to http://hostname:8080/process. The service expects two

variables to be sent as form-data: text and format. Optionally an id variable can be specified for content

identification purposes. Both HTTP GET and HTTP POST are allowed.

Variables:

Output data

First an example of the simplified json format (format=simplified-json) is given. This format is

recommended as it tries to summarize the more exhaustive advanced output. The output structure returns a

list of keywords, the main countries involved, the main topics (of the entities) and the main entity types.

{

 "keywords": [

 "US",

 "Donald Trump",

 "Ukraine",

 "Joe Biden"

],

 The id variable (optional) can contain any string value. It will be copied back in the output.

 The text variable must contain the content of the article. It is recommended to concatenate title and

body together, separated by a newline character.

 The format variable specified the requested output format. Allowed values are: html, simplified-json

and json (advanced output).

 D3.4: Technology Bricks V3|Public

Page 21 ©Copyright ATC and other members of the CPN Consortium 2019

 "locations": {

 "US": 12,

 "Ukraine": 8

 },

 "topics": {

 "media": 1,

 "politics": 14

 },

 "types": {

 "entity": 17,

 "gpe": 2,

 "gpe0": 2,

 "head_of_state": 1,

 "igo": 1,

 "location": 2,

 "minister": 1,

 "organization": 7,

 "party": 1,

 "person": 8,

 "politician": 6,

 "politics_institution": 4,

 "politics_per": 2,

 "role": 2,

 "so": 1,

 "time": 2,

 "value": 5

 }

}

Next we show the full output (format=json) for the same news article. The output contains a copy of the

input data (id and content), but also a list of recognized mentions, a list of concepts and a list of relations.

Each mention refers to the concept it is associated with through its concept attribute (index in concept

array). Concepts have the following attributes: text (the longest surface form), count (how many times they

occur in the text), a list cpn types, a list of topics, slot types (if relevant), IPTC codes (if relevant) and a list

of wikidata instance types (Q codes). The tag attribute must not be used and is included for debugging

purposes only. Q codes can be looked up on wikipedia and wikidata, they enable you to filter on very

specific entity types: e.g., Q1520223 refers to a constitutional republic. Relations are expressed as (subject,

predicate, object) triples. Both subject and object are indices into the concept array.

 D3.4: Technology Bricks V3|Public

Page 22 ©Copyright ATC and other members of the CPN Consortium 2019

{

 "id": null,

 "content": "A top US diplomat has told an impeachment inquiry that he followed President Donald

Trump's orders to put pressure on Ukraine to investigate his Democratic rival, Joe Biden.\r\n\r\nThe

instruction came from Mr Trump's personal lawyer, Rudy Giuliani, Ambassador Gordon Sondland

said.\r\n\r\nThe inquiry is assessing if Mr Trump withheld military aid to Ukraine as a precondition. He

denies any wrongdoing.\r\n\r\nIt is illegal in the US to seek foreign help to gain electoral

advantage.\r\n\r\nMr Biden is one of the top contenders for the Democratic nomination for the 2020

presidential election.\r\n\r\nMr Sondland, the US ambassador to the EU, told the latest hearing in the US

House of Representatives that Mr Giuliani had sought a public statement from Ukraine's leader, Volodymyr

Zelensky, announcing an inquiry into \"corruption issues\".\r\n\r\nMr Giuliani specifically mentioned the

company Burisma - which had the son of Democratic presidential candidate Mr Biden, Hunter, as a board

member - and issues surrounding the 2016 US presidential election, he said.\r\n\r\nSondland's testimony

and reaction\r\nFive key moments from impeachment hearing\r\nWho's who in Trump-Ukraine

story?\r\nWhy Ukraine is so important to the US\r\nIf found guilty in a majority vote in the House, the

Republican president will face an impeachment trial in the Senate. But two-thirds of members of that

Republican-controlled chamber would then need to vote for Mr Trump to be removed from office.\r\n",

 "mentions": [

 {

 "begin": 6,

 "concept": 0,

 "end": 8,

 "text": "US"

 },

 {

 "begin": 67,

 "concept": 1,

 "end": 76,

 "text": "President"

 },

 ...

],

 "concepts": [

 {

 "text": "US",

 "count": 12,

 "type": ["location", "entity", "gpe", "gpe0"],

 "topic": ["none"],

 D3.4: Technology Bricks V3|Public

Page 23 ©Copyright ATC and other members of the CPN Consortium 2019

 "slot": ["keyword"],

 "iptc": [],

 "auto": ["Q1646605", "Q1520223", ...],

 "tag": ["type::location", "type::entity", "topic::none", "type::gpe", "slot::keyword", "type::gpe0"],

 },

 ...

],

 "relations": [

 [21, "member_of", 4],

 [15, "institution_of", 0],

 [16, "institution_of", 0],

 [23, "institution_of", 0]

]

}

3.1.5 Testing Scenarios

The information extraction modules have been tested extensively on held-out articles from the new dataset

with the appropriate metrics (F1 for named entities, B-cubed F1 for co-reference...). Below, some scientific

conclusions are formulated in terms of neural network design for the dedicated information extraction tasks.

For detailed numerical results, we refer to the technical report. Besides the extensive evaluation of

information extraction quality, the impact of the extracted features on the recommendation quality has not

been measured yet; this is currently under discussion for Pilot 3.

3.1.6 Conclusion and Overview of Research Findings

In summary, we created a new dataset to be used for a variety of information extraction tasks on an actual

real-world news corpus, based on English content from Deutsche Welle. The annotation instructions were

described extensively in a separate guidelines file. In accordance with the guidelines, a large number of

annotations was performed, to be used for training and evaluating the information extraction tasks.

Related to a number of unique properties of the dataset, in terms of article-level annotations for entities and

relations (today often done on the more limited sentence level), new neural network architectures were

designed. These were evaluated extensively. The results were reported in detail, and as a proof-of-

concept, a Docker container was delivered with access through a well-documented API to the overall best

performing models.

 D3.4: Technology Bricks V3|Public

Page 24 ©Copyright ATC and other members of the CPN Consortium 2019

We conclude with a short summary of the main scientific findings, based on the many different neural

network architectures designed and tested for the information extraction tasks on the Deutsche Welle

dataset:

3.1.7 Installation and administration guidelines

The module is deployed as a Docker container into the CPN platform.

3.2 Distribution Framework

3.2.1 Overview

Current licensing and ownership models in journalism require lengthy negotiations to access, redistribute,

and remix content. In the age of the 24hr news cycle this can make it difficult to source quality content

from freelancers in a timely and secure manner, while also ensuring provenance.

 Adding a token aggregation layer, which shares information over different occurrences of a token in

the entire article, results in better results for Named Entity Recognition (NER).

 Span based models for NER are able to compete with models using the traditional BIO encoding

scheme.

 In comparison to NER, the co-reference and relation tasks prefer shallower recurrent neural networks

(RNNs) and wider convolutional neural networks (CNNs) for processing n-grams.

 Iterative scoring functions clearly outperform non-iterative scoring functions (such as dot product,

biaffine and feed forward networks).

 Propagation methods based on updating node representations in an iterative manner are not beating

edge representation models, even with advanced gating functions.

 Our score propagation model beats all other iterative models, even though it is much simpler. This

indicates that the models that update node representations are somehow missing something.

 Although the mention-wise latent relation loss is able to beat concept-wise relation prediction with

non-iterative scoring functions, we were not able to achieve better results for the latent loss with

propagation methods. A disadvantage is that they are not able to aggregate information from

mentions associated with the same concept.

 Multi-task learning of the NER, co-reference and relation does not lead to better results yet. One

problem is that individual models have slightly different optimal hyperparameters (e.g. co-reference

is sensitive to higher dropout values, while other models require them). Another problem is that of

selecting optimal task weights.

 D3.4: Technology Bricks V3|Public

Page 25 ©Copyright ATC and other members of the CPN Consortium 2019

The Distribution Framework aims to simplify the contractual negotiations between creators and editors by

creating a pool of licensed content collaboratively managed by multiple trusted journalistic organizations

without a single overarching authority. This is achieved by using Distributed Ledger Technology, in

particular

Hyperledger Fabric, to manage the article licenses.

3.2.2 Role

The Distribution Framework serves to ingest journalistic content from media organizations and freelancers,

enable transparent linkage to a human-readable license through a simple website, and present this to other

organizations for sourcing and use according to the terms of the license.

The Framework sits between all participants in the system, preventing disagreement and simplifying the

process of sourcing and distributing news content. In the future this could be extended with pricing and

payments to create a trustless distributed content marketplace.

 D3.4: Technology Bricks V3|Public

Page 26 ©Copyright ATC and other members of the CPN Consortium 2019

3.2.3 Internal Architecture

Figure 2: Architecture schema of the Distribution Framework module

3.2.4 APIs

The peer nodes expose two levels of APIs:

- An internal REST API, which directly interacts with assets on the chain.

- A public GraphQL API, which interacts with the REST API.

 D3.4: Technology Bricks V3|Public

Page 27 ©Copyright ATC and other members of the CPN Consortium 2019

The REST API allows for basic CRUD operations on the different assets stored on the blockchain (content

meta-data, licenses, agreements, ownership…). Changes to the chaincode will also affect the REST API.

For this reason, we have built a pGraphQL API on top of the REST API. This way we can ensure not to

break the CPN client applications that are storing and accessing assets from the blockchain.a JWT token is

expected from the clients.

3.2.5 Testing Scenarios

The network was first deployed in a very limited configuration: one peer node, one ordering node, one

certificate authority. This limited setup allowed for a rapid development and testing the chain-code (smart-

contract), APIs and Frontend.

Once the chain-code and APIs reached a certain maturity, in terms of feature and stability, we switched our

focus on the production network deployed on multiple nodes (see figure above).

The scenarios tested of the production network are:

A dedicated section on the Producer’s dashboard UI will be provided in order to allow to editors to exploit

some of the distribution framework functionalities directly from the dashboard.

3.2.6 Installation and administration guidelines

All services used by the distribution framework are deployed as Docker containers, thus portable to any

cloud providers or on premise servers that are Docker-compatible. To facilitate the administration of the

distributed network, we provide a collection of bash scripts that allow for deployment of a new peer in the

network, creation of the genesis block and installation/upgrade of the chain-code (smart contracts). These

scripts can either be run from a host machine or from the hyperledger-cli container, which is a container

initialized with all the scripts available for execution having the purpose of administration of the network.

In the event of the handover of the organization nodes to their respective owners, they will need to follow

a procedure to initialize their MSP and PEM files in order to gain full ownership of the nodes, and to

communicate their hostnames and public keys to the network admin in order to join the network as

participants.

 Ensure the nodes can communicate with each other’s

 Ensure the network can still accept transactions when less than half of the peer nodes are down

 Ensure access control list are defined and enforced

 Ensure the API is not available without authentication

 D3.4: Technology Bricks V3|Public

Page 28 ©Copyright ATC and other members of the CPN Consortium 2019

4. UPDATES ON AVAILABLE BRICKS

4.1 User Modelling

4.1.1 Overview

The user modelling module is in charge of creating, maintaining and building a profile of the users of the

CPN Reader’s App. In addition, it is also in charge of analyzing the articles collected by the Cute4LE

module by performing a “semantic enrichment” of the text collected; the multilingual text is extracted in

order to find relevant entities (such as person names, organizations names, locations etc) and extracting

keywords.

4.1.2 Role

This module constitutes one of the most important elaboration points in the CPN processing pipeline as it

lays down the basis for the recommendation module to work. The recommendation process can be seen as

a matching process between a list of users and a catalogue of items. Users and items can be described by

vectors of features. The module is responsible for creating, maintaining and continuously updating such

vectors of features associated to users and news items.

In this first release, the features used to represent Users are the following:

These features constitute the “User profile”. The user profile is built partly on the information provided

explicitly by the user himself and partly on the information provided by the user in an implicit way (e.g.

long time spent reading an article is considered an implicit manifestation of interest for that article and the

related topics)

The features used to represent “News Items” are the following:

 Informational features: name, email contact

 Socio-demographic features: age range

 Behavioral features: news reading history, like/dislike history

 Topics of Interests: the ranked of list of topics for which the user has implicitly expressed interest

for over the time

 D3.4: Technology Bricks V3|Public

Page 29 ©Copyright ATC and other members of the CPN Consortium 2019

The module is able to extract metadata from three different source languages, namely English, Dutch and

Greek.

4.1.3 Internal Architecture

The module relies on the following components:

4.1.4 API

This module is in charge of maintaining users’ data keeping track of his/her interests, history of click and

news consumption and demographic data. This data will be mainly used by the recommender engine in

order to select the most suitable news in according to a given user profile. The data consumed by this

module will be the list of events generated by the users (posted through the broker). The kind of events that

the module will be processing are the following:

 Basic article metadata: URL, date, tags (if provided by the original source)

 Automatically extracted metadata: named entities (persons, locations, organizations cited in the text),

unsupervised list of keywords, relations between entities in the text.

 Components for retrieving messages from a broker:

They are in charge of connecting to the Apache Kafka broker end retrieve different kind of messages:

news elaboration messages (new articles to elaborate) and user events.

 NLP processing components:

Elaboration pipelines able to extract meaningful information from multilingual text. The core

technologies actually used are: NLTK, Spacy, Polyglot (python libraries) and Stanford CoreNLP

(java library/server).

 Storage components:

Storing the result of the elaborations and users’ personal data: the backend used in the storage module

are MongoDB and Apache Solr search server.

 REST API Layer:

A python Flask layer of services exposing the CRUD operations for user profile management.

 “News”: when a news item is added to the broker it is retrieved by the module in order to tag, analyze

it, extract topics, etc.

 “Users_feedback”: every action initiated by a customer that is collected by the platform it is collected,

processed and stored in the user profile. Typical events are:

 D3.4: Technology Bricks V3|Public

Page 30 ©Copyright ATC and other members of the CPN Consortium 2019

◦ User clicks

◦ Users ratings (explicit rates, thumbs up/down, etc)

◦ User profile update (e.g. change of name, location, age, etc)

Data produced

Schema Version 0.1:

userModellingSchema:

{

 "user_id": "String",

 "demo": {

 "gender": "String",

 "age": "Number",

 "name": "String",

 "email": "String"

 },

 "interests": [

 {

 "id": "String",

 "label": "String",

 "score": "Number",

 }

],

 "activities": [

 {

 "item_id": "String",

 D3.4: Technology Bricks V3|Public

Page 31 ©Copyright ATC and other members of the CPN Consortium 2019

 "event": "String"

 }

]

}

Module updates: The user modelling profile has been modified in order to include “Locations Of Interest”;

this information is given to the recommender in order to privilege articles including entities related to

locations of interest for a specific user.

New event types have been added:

Finally, the API has been enriched with a method for deleting a particular event (e.g. an article read in the

past). This functionality has a two-fold impact: on one side, it gives to the user the complete control of their

personal data (including registered events and activity) and it allows influencing the recommender process

by deleting, for example, articles not interesting or reading by accident from the activity record.

4.1.5 Testing Scenarios

The module has been tested in isolation and in a full integrated way receiving text from Cute4LE module

via the Kafka broker, elaborating and storing into Mongo and SOLR search server. The pipeline is currently

active and elaborating all the test documents that are submitted on the broker.

4.1.6 Installation and administration guidelines

The module is deployed as a Docker container into the CPN orchestration platform

4.2 Recommender

4.2.1 Overview

The module is in charge of computing the most suitable news recommendations for CPN users. It has to

analyze the users’ profiles and collected news to find the most “interesting” news items to be proposed by

the app.

4.2.2 Role

The current state of the art techniques for recommending items are based on two main areas: content based

(that relies on good semantic modelling/feature extraction and selection on the items to be recommended)

and collaborative filtering techniques (that are essentially domain-independent and take into account

network metrics based on emerging similarity graphs of users and items). Our system uses an hybrid

 Time spent reading an article

 List of articles skipped by the user (expressing a potential lack of interest for the articles presented)

 D3.4: Technology Bricks V3|Public

Page 32 ©Copyright ATC and other members of the CPN Consortium 2019

approach that uses variable proportions of the mentioned techniques for each user learning (using Machine

Learning techniques) from explicit and implicit feedback given by the users themselves: clicks, ratings,

sharing, etc. The system is customizable for including content-delivery strategies’ optimization:

multichannel and date/time optimization (predicting the probability of interests at a given time on a given

channel) and includes mechanisms for fostering “serendipitous” discoveries.

The recommender exploits the features extracted from the document enriching modules: relation extraction,

user modelling, user feedbacks, topic annotation, uplifting/depressing classifier, semantic uplifting,

relation-extractor.

4.2.3 Internal Architecture

The module relies on the following components:

Components for retrieving messages from a broker:

They are in charge of connecting to the kafka broker end retrieve messages that will trigger a new

recommendation for a specific user

Recommendation components:

Elaboration pipelines that are used to actually compute the recommendations for all the users: the technique

used are content-based recommendations implemented relying on Apache Solr search server and NLP

pipelines and “Collaborative filtering techniques” using custom and state of the art libraries such as python

Surprise and Implicit.

Storage components:

Storing the result of the recommendation process: the backends used in the storage module are MongoDB

and Apache Solr search server.

REST API Layer:

A python Flask layer of services exposing the CRUD operations for recommendation retrieval.

4.2.4 API

Data consumed

The data consumed by this module is the output of DS4Biz-UserModelling module and the output of the

news and social media collector modules

Data produced

We will start with a very simple schema for the recommendations to be updated in the next releases.

Model schema:

 D3.4: Technology Bricks V3|Public

Page 33 ©Copyright ATC and other members of the CPN Consortium 2019

[{

id : String, // Internal Id of the recommendation

user_id : String, // Internal Id of the user

score : Number, // The relevance score of this recommendation as computed by the recommender engine

date : Date // When this recommendation was computed

}]

Examples

[

 {

 "id":"xxxxxx",

 "user_id":"yyyyyyy",

 "item_id":"zzzzzzz",

 "date":"Fri, 11 May 2018 08:40:10 +0000",

 "score":0.8

 },

 {

 "id":"xxxxxx",

 "user_id":"yyyyyyy",

 "item_id":"zzzzzzz",

 "date":"Fri, 11 May 2018 08:40:10 +0000",

 "score":0.5

 }

]

Module updates: The recommender has been improved by performing fine-tuning tests on historical data

provided by VRT and on data gathered through Pilot 2 execution. The different recommendation

techniques have been tested in isolation in order to assess the impact to the overall hybrid technique.

The recommender has also been modified to account for different user event types (registered by the

UserModelling module) and adjust the recommendations for each user accordingly.

 D3.4: Technology Bricks V3|Public

Page 34 ©Copyright ATC and other members of the CPN Consortium 2019

4.2.5 Testing Scenarios

The module has been tested in isolation and in a full integrated way computing recommendations based on

the output of the UserModelling module. The pipeline is currently active and continuously computing

recommendations for users as new events occur (e.g. documents are added, user profiles are updated, etc).

4.2.6 Installation and administration guidelines

The Recommender module is composed of several submodules all deployable by using Docker

orchestration technologies (e.g., Cattle, Kubernetes, etc.). It is easily deployable using CPN platform’s

orchestration dashboard (based on Rancher) and a Docker Compose file with all the relevant settings has

been provided.

4.3 Topic Extractor

4.3.1 Overview

The module is used to extract topics from articles in order to have a concise representation of the content

of the article to be exploited by the recommender module. It is able to perform domain independent

terminological, taxonomical and ontological extraction from unstructured sources using metrics and

strategies based on statistical, linguistics and extra-linguistic features (e.g. text. The text-extraction sub-

module is able to extract text from heterogenous documents including PDFs, web pages, ms-office files,

xml, etc. It also provides the possibility of extracting text from scanned PDF documents via state-of-the-art

OCR technologies (tesseract v4.x5 5). The tool can be used to automatically build a domain

terminology/ontology from unstructured sources that can be later used for document annotation and

retrieval; the terminological candidates are multiword expressions that are filtered through different stages

of scoring. In the context of CPN it will be used to constantly enrich a list of emerging topics from news

corpora and annotating incoming news according to this topic list.

4.3.2 Role

The module is operating at the backend level of the CPN platform. It is deployed as a microservice but it is

not exposed through the API gateway but it is only queried by integration microservices. The structure of

the flow is the following: New content is ingested periodically by the platform by querying the publishers

API/RSS/feeds The new content is posted on the CPN message broker (Apache Kafka) A worker module

is listening for new messages on the broker and as soon as it receives them it calls the Topic Extraction

module by passing the content of the article to it (in the form of a JSON message) The Topic Extraction

Module performs a language detection in order to apply the most suitable Natural Language Processing

techniques to extract terminological candidates (topics) Topics are filtered and finally ranked according to

TF/IDF score and the article, enriched with these topics, is saved into its final storage (Apache SOLR) to

be retrieved later during the recommendation phase. The module addresses the user requirement UR-UP1

(Interests: What topics is the user interested in?)

5 https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM

https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM

 D3.4: Technology Bricks V3|Public

Page 35 ©Copyright ATC and other members of the CPN Consortium 2019

4.3.3 Internal Architecture

The module is realized in python using Flask and several Natural Language Processing libraries:

The module is organized in the following way:

Module updates: in order to manage additional languages for different partners/pilots/external media

companies the NLP processing pipeline has been extended with several linguistic resources (German

language embeddings, Spanish, Italian, etc). Adding support for an additional language can now be, in

most cases, performed via configuration files.

 NLTK: it provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet,

along with a suite of text processing libraries for classification, tokenization, stemming, tagging,

parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active

discussion forum.

 Treetagger: it is a tool for annotating text with part-of-speech and lemma information. It was

developed by Helmut Schmid in the TC project at the Institute for Computational Linguistics of the

University of Stuttgart. The TreeTagger has been successfully used to tag German, English, French,

Italian, Danish, Dutch, Spanish, Bulgarian, Russian, Portuguese, Galician, Greek, Chinese, Swahili,

Slovak, Slovenian, Latin, Estonian, Polish, Romanian, Czech, Coptic and old French texts and is

adaptable to other languages if a lexicon and a manually tagged training corpus are available.

 Polyglot: a natural language pipeline that supports massive multilingual applications.

 Spacy: another natural language pipeline that supports massive multilingual applications.

 Service layer: this layer receives the user requests and performs the conversion of the parameters,

JSON body and validate them. It then transforms such parameters into appropriate python objects

and passes them to the business layer for elaboration. After it receives the response from the business

layer it converts it back to a JSON response and gives it back to the client.

 Business layer: based on the user request, as converted by the service layer, it examines the text

provide and extracts topics in an unsupervised way by using a noun phrase chunking to build

syntactically plausible terminological noun phrases, NPs (e.g. compounds "credit card", adjective-

NPs "local tourist information office", and prepositional-NPs "board of directors"). One of the most

useful sources of information for NP-chunking is part-of-speech tags. This is one of the motivations

for performing part-of-speech tagging in our information extraction system. In order to create an NP-

chunker, we will first define a chunk grammar, consisting of rules that indicate how sentences should

be chunked. In CPN case, we define several grammars by using regular-expressions rules. The

module is invoked directly by a worker (listening to messages on the Kafka broker). The results are

then stored on the enriched content storage (Apache SOLR).

 D3.4: Technology Bricks V3|Public

Page 36 ©Copyright ATC and other members of the CPN Consortium 2019

4.3.4 API

The Topic Extractor module provides a single API to be used only by internal microservices:

Topic Extraction

Method HTTP Request Description

POST /extract Extract topics from body content Input

format: the service is expecting textual data

in one of the currently supported languages

(English, German, Greek, Dutch, German,

Spanish, Italian) enclosed into a json object

with single text key: {“text”: “Donald

Trump, the president of US,....”}

Module updates: the overall architecture of the module has been revised for processing tasks in additional

languages (Spanish, some tasks for German language, French, etc.). The linguistic resources have been

centralized in a data-container deployed on the CPN platform; in order to add a new language support, the

data-container can be updated at runtime without the need of interrupting the main Topic Extraction service.

4.3.5 Testing Scenarios

The module has been tested in isolation and in a full integrated way receiving text from Cute4LE module

via the Kafka broker, elaborating and storing into Mongo and SOLR search server. The pipeline is currently

active and elaborating all the test documents that are submitted on the broker.

4.3.6 Installation and administration guidelines

The module is deployed as a Docker container into the CPN orchestration platform

4.4 Recommender A/B Testing

4.4.1 Overview

The module is tightly integrated with the Recommender module and exposes an API that allow every

publisher to create recommenders and user groups. It is a “configuration” module and recommenders and

groups can be created and modified in any moment by publisher/administrators of the platform.

Recommenders can be created by instantiating the ones currently offered by the platform i.e.:

1. Content-based recommendation: based on unsupervised keyword extraction and named entity

extraction, semantic uplifting techniques etc.

 D3.4: Technology Bricks V3|Public

Page 37 ©Copyright ATC and other members of the CPN Consortium 2019

2. Collaborative filtering techniques: assessing users consumption history similarity

3. Most Popular Recommendations: recommendations based on trending items

4. Random recommendations: to add variety to the recommendations

5. Composite recommender: quota based combinations of the above techniques

User groups are created by specifying a name for the group and then, by calling a specific api, users are

added to groups by specifying their user ids.

The AB-Testing interacts with two modules of the CPN platform: the already mentioned Recommender

module and the API Gateway that is needed to publicly expose this internal API to publishers.

● Detail the requirements addressed by this module (referring to specifications codes in table 1/

section 2 of the D3.1: Initial Design and APIs of Technology Bricks).

The module covers a special case of the requirement UR-PS 1 (Detailed Analytics: Giving Newsrooms a

more detailed feedback on their audience) since it allows the newsrooms to experiment with different

recommendation approaches, collect different feedbacks and formulate insights.

4.4.2 Role

The module is used to be able to test different versions of the recommender at the same time on different

user groups in order to compare the behavior of different approaches to content personalization. Every

publisher is able to create an unlimited number of groups and recommenders and to associate a specific

recommender to a group. A/B testing can produce concrete evidence of what actually works in

personalization. The module can be used for continuously testing new techniques and approaches in order

to optimize conversion rates and gain a better understanding of the customers.

4.4.3 Internal Architecture

The module is realized in python using Flask and PyMongo libraries.

The module is organized in the following way:

def factory(request):

 if isinstance(request, RandomRecommenderRequest):

 return

 Service layer: this layer receives the user requests and performs the conversion of the parameters,

JSON body and validate them. It then transforms such parameters into appropriate python objects

and passes them to the business layer for elaboration. After it receives the response from the business

layer it converts it back to a JSON response and gives it back to the client.

 Business layer: based on the user request, as converted by the service layer, it prepares the queries

or the data to be written in the database (by invoking Recommender Factories). The implementation

of the Recommender Factory is as follows:

 D3.4: Technology Bricks V3|Public

Page 38 ©Copyright ATC and other members of the CPN Consortium 2019

MostRecentRecommender(None,relative=relativedelta(days=request.days),storage=AppConfig

.ITEM_DAO,users=AppConfig.USERS_DAO)

 if isinstance(request, ContentBasedRecommenderRequest):

 return

CBRecommender(None,relative=relativedelta(days=request.days),solr_dao=AppConfig.ITEM

_DAO,user_dao=AppConfig.USERS_DAO)

 if isinstance(request, CollaborativeFilteringRecommenderRequest):

 return

CFRecommender(None,relative=relativedelta(days=request.days),solr_dao=AppConfig.ITEM_

DAO,user_dao=AppConfig.USERS_DAO)

 if isinstance(request, CompositeRecommenderRequest):

 if not request.sorting:

 request.sorting="score"

 return CompositeRecommender(None, quotas=[RecommenderQuota(factory(recc),v) for

(recc,v) in request.quotas],sorting=request.sorting)

 raise Exception("%s not supported"%request)

class ABTestingDAO:

 def add_to_group(self,group,user_id):

 raise NotImplementedError()

 def map_group_recommender(self,group,recommender_id):

 raise NotImplementedError()

 def recommender_for_user(self,user_id):

 raise NotImplementedError()

The module is interacting with the Recommender module and uses as a storage engine MongoDB

 Data layer: it performs the actual queries on the MongoDB storage by means of a DAO class. The

interface of the DAO class is described in the following table

 Any dependencies to external components must be highlighted, as well, as well as providing

references to the expected technologies and their specifications exploited by this module.

 D3.4: Technology Bricks V3|Public

Page 39 ©Copyright ATC and other members of the CPN Consortium 2019

4.4.4 API

CPN is a multi-tenant platform for content personalization: each tenant (for example each of the partners

of the consortium, DW, VRT and DIAS) has full control on the type of recommendations and user groups.

This API is not available to the end-users but only to platform tenants administrators (publishers/media

companies).

Recommender management API

Method HTTP Request Description

POST /admin/<tenant>/recommenders Create a new recommender for the tenant.

Method HTTP Request Description

GET /admin/<tenant>/recommenders List all the recommenders defined by a

specific tenant.

Method HTTP Request Description

GET /admin/<tenant>/recommenders/<id> Retrieve and show a recommender given its

id.

Method HTTP Request Description

DELETE
/admin/<tenant>/recommenders/<id>

Delete a recommender given its id

Method HTTP Request Description

GET /admin/<tenant>/users/<userid> Retrieve the recommender used to

personalize content of a specific user.

Groups management API

 D3.4: Technology Bricks V3|Public

Page 40 ©Copyright ATC and other members of the CPN Consortium 2019

Method HTTP Request Description

PUT /admin/<tenant>/users/<userid>/<group> Adding a user to a specific user

group.

Method HTTP Request Description

GET /admin/<tenant>/groups List all the groups defined by a specific

tenant

Method HTTP Request Description

GET /admin/<tenant>/map/<group> Retrieve the recommender used to

personalize content of a specific group.

Method HTTP Request Description

DELETE /admin/<tenant>/groups/<group> Delete a user group.

Recommender/groups mapping API

Method HTTP Request Description

PUT
/admin/<tenant>/map/<group>/<reco

mmender_id>

Associate a recommender to a specific

group

4.4.5 Testing Scenarios

In the following table, we show a typical json request that can be used to create a composite recommender

combining three techniques (Content-based, Collaborative Filtering and Random) with 33%/33%/34%

quotas.

POST /admin/<tenant>/recommenders

 D3.4: Technology Bricks V3|Public

Page 41 ©Copyright ATC and other members of the CPN Consortium 2019

{/admin/<tenant>/recommenders

 "__class__": "CompositeRecommenderRequest",

 "quotas": [

 [

 {

 "__class__": "ContentBasedRecommenderRequest",

 "days": -0.041666666666666664

 },

 0.33

],

 [

 {

 "__class__": "CollaborativeFilteringRecommenderRequest",

 "days": 0.041666666666666664

 },

 0.34

],

 [

 {

 "__class__": "RandomRecommenderRequest",

 "days": 0.041666666666666664

 },

 0.33

]

],

 "sorting": "date"

}

The output of this call will be a string representing a new recommender id (for example

id=5cb903a7c72eacb74cc93b42).

If we have defined a group test we can associate this new recommender to the group by executing the

following call:

PUT /admin/VRT/map/test/5cb903a7c72eacb74cc93b42

that can be read in this way: the tenant VRT is giving to the group test the recommendations produced by

the recommender 5cb903a7c72eacb74cc93b42.

4.4.6 Installation and administration guidelines

The module is deployed as a Docker container into the CPN orchestration platform

 D3.4: Technology Bricks V3|Public

Page 42 ©Copyright ATC and other members of the CPN Consortium 2019

4.5 Reader's App

4.5.1 Overview

The third version of the CPN prototype includes updates on the mobile application and the introduction of

a smart speaker application. The user feedback derived from Pilot 2, together with the relative comments

from the 2nd Review of the project, were discussed and new features were implemented for Pilot 3,

4.5.2 Internal Architecture

Both the Mobile Android application and the Smart Speaker Application are consumers of the CPN API.

Any interaction with the recommender and all the other modules of the platform are achieved via this API.

Figure 3: Reader's App consumers

 D3.4: Technology Bricks V3|Public

Page 43 ©Copyright ATC and other members of the CPN Consortium 2019

4.5.3 Mobile Application

The mobile application is the main component available for

general consumer public. Thus, it is important to achieve an

efficient news personalization, making the most out of the

Recommender brick and all other bricks that constitute the

CPN platform.

The main features of the mobile application that were delivered

for Pilot2 are:

Registration/ Login

Within the registration layout, the user enters among others, the

preferred media source (non-configurable) and the location of

interests. The user can also connect the CPN ID to his/her

twitter account. This information, together with the locations

of interest are sent via CPN API to the Recommender.

Moreover, the user has the control of his/her permissions

(location, preferences, time usage). The permissions can be

updated any time and the user is informed about this update by

means of Personal Data Receipts Brick. For the registration/

login process, the users can also use their Facebook or Google

accounts.

Three Streams in the main layout.

“Your News” stream includes the personalized news

information coming from the Recommender.

“Headline” stream includes the most important news,

characterized as such by the specific source media.

“Popular” stream includes the most read articles, within the

media source available list of articles.

For DIAS (SIgmaLive) media partner, the streams above, are:

“Your News”, “Latest” and “Popular”

Note that the user can any time deactivate or activate again the

personalized information feature

Figure 4: Login Layout

Figure 5: Main Layout

 D3.4: Technology Bricks V3|Public

Page 44 ©Copyright ATC and other members of the CPN Consortium 2019

Mark an article as interesting or irrelevant.

While using the application, scrolling down within any of the available streams, the user can characterize

an article as “interesting” or “irrelevant” by swiping the article right and left, respectively.

Figure 7: Characterize an article as "interesting"

Account settings

Figure 6: Deactivate or activate again the
personalized information feature

 D3.4: Technology Bricks V3|Public

Page 45 ©Copyright ATC and other members of the CPN Consortium 2019

The user can at any time connect the CPN account with his/her Twitter profile (to provide more input for

the Recommender), can update the permission schema (triggering the Personal Data Receipts mechanism).

There is also the option for the user to delete his/her account permanently, with all the data created using

the application.

The user activity is tracked, within the application and the following Article related Actions are sent

towards the CPN API:

Feedback/ Rating

By means of the feedback or rating feature, both the media

and technical partners have the chance to collect a variety of

reviews, see what’s working and embrace negative reviews.

Additional features added for Pilot 3.

The new version of the mobile application intended to be

used for Pilot 3, includes comments from the Pilot 2 and the

last official review meeting feedback.

The most important new features included are:

Voice Commands

In Article Details, the user can say:

“read” or “read article” in order to have the title and the

content of the article read by the device and its text-to-

speech engine.

“interesting” or “mark interesting” to mark the article

interesting. After that, the article can be found in the corresponding list of interesting articles.

“irrelevant” or “mark irrelevant” to mark the article irrelevant. After that the article can be found in the

corresponding list of irrelevant articles.

 open an Article,

 read an Article,

 reach the bottom of an Article (full scrolled)

 close an Article,

 interested,

 not interested/ irrelevant

Figure 8: Voice Commands

 D3.4: Technology Bricks V3|Public

Page 46 ©Copyright ATC and other members of the CPN Consortium 2019

At the Article Lists section, the user can say: “top your news” or “top headlines” or “top most read” to get

the first 5 articles of the corresponding stream.

Time Period based Headlines

The user can get headlines from specific time periods (i.e. Latest, Yesterday, Last Week)

Transparency

In each article proposed under the “Your News” tab, the user can know why the specific article is proposed

by the Recommender, y means of an “i” on the top right corner.

Facebook login integration

Facebook login is integrated into CPN mobile application. This feature gives the opportunity to use user's

Facebook information to enrich their experience and to provide them with tailored content. In order to use

this feature the user has to agree on the related policy. The analysis and the evaluation of the content is

achieved by u-Hopper SME. The analyzed data is sent from u-Hopper back to the mobile application and

forwarded to CPN API.

Text-to-Speech

At the Article Lists section, tapping the related icon, the titles

of the articles in the article lists (“Your news”, “Headlines”,

“Most read”) are read by the device’s text-to-speech engine

while scrolling.

This functionality can be turned on and off by the user.

Figure 9: Text to speech button

Location(s) of Interest

The user can add multiple location of interest. If the user has

allowed the process of the location data, their current location

is considered by the platform as a “location on interest” and

vice versa

The information sent towards the CPN API, includes both

Name and Coordinates:

User.registrationInfo.interestLocation=

“Ghent:lat 51.0543422 lng 3.7174243000000002;

Thessaloniki:lat 40.6400629 lng 22.944419099999998;

CurrentLocation:lat 37.421998333333335 lng -

122.08400000000002”

Filtering options

The app let the user to exclude specific categories or tags from the list of the possible recommended articles.

Breaking News functionality
Figure 10: UX adapted for DIAS media partner

 D3.4: Technology Bricks V3|Public

Page 47 ©Copyright ATC and other members of the CPN Consortium 2019

Articles characterized as “Breaking” by the media partners, are displayed with the appropriate indication.

Breaking news articles are excluded from any filtering settings, since they are of great importance.

Include Surveys within the application.

Instead of communicating with the users via email, surveys are included into the application, using the

Qualtrics survey component.

Adapt the UX to be Media source specific.

Since the mobile application is tightly connected to a specific media source, that is not configurable and set

during the registration process, the UX environment is adapted to this media source (SigmaLive, DW,

VRT). This can add value to the application, taking advantage of the branding of the media partners.

 More Features:

4.5.4 Smart Speaker

A Google Assistant application is implemented as an additional Reader’s application.

 Send towards CPN API the information about the device or the display used.

 Let the backend know how many articles the user has scrolled before opening an article.

 UNDO option.

 Let the user delete specific activities.

 Send “time-spent” action, indicating the time the user spent on a specific article.

 Implement webview for internal links.

 D3.4: Technology Bricks V3|Public

Page 48 ©Copyright ATC and other members of the CPN Consortium 2019

The smart speaker application will launch, delivering the titles of the recommended articles. These titles

will be read by the Google Assistant. The user can ask the Google Assistant to:33

Figure 11: Smart speaker launched for a logged in user - simulation node

4.5.5 Installation

The mobile application is uploaded on Android Playstore, as a beta version.

The aforementioned link is: https://play.google.com/apps/testing/gr.blockachain.cpn

4.6 Personal Data Receipt

4.6.1 Overview

This module serves to reassure the user that their data is being handled correctly and with their permission.

It sends them an email receipt (the Personal Data Receipt) whenever they make changes to the permissions

they have granted the system.

4.6.2 Role

This module has an important role for ensuring the user is able to confirm and exercise their rights under

GDPR.

https://play.google.com/apps/testing/gr.blockachain.cpn

 D3.4: Technology Bricks V3|Public

Page 49 ©Copyright ATC and other members of the CPN Consortium 2019

4.6.3 Internal Architecture

Figure 12: Architecture Schema for Personal Data Receipt module

4.6.4 API

The PDR brick is composed of 2 distincts APIs. the cpn-pdr-api (the public API) and the blockchain-api

(internal API used to send the hash to the blockchain).

Both of them expose an http interface; the cpn-pdr-api is in charge of generating the PDR from the user

request and to send the PDR to the user via email.

The blockchain-api is called by the cpn-pdr-api to write the hash of the PDR into the blockchain. Continuous

checks for any new additions to the ledger are in place in order to synchronize node state. Another loop

(transactionEnforcer) checks that all written hashes to the blockchain have reached sufficient block-depth

to be considered stable and permanent.

The PDR public API allows to POST a JSON of the following format:

{

 "trigger": "PROFILE_UPDATE", // enum { PROFILE_UPDATE | MANUAL_REQUEST |

REGISTRATION }, mandatory

 "cpn_user_id": "5b222556f8ac34000a1d1562", // string (base64), mandatory

 "cpn_registered_email": "anthony.garcia@digicatapult.org.uk", // string (email) required

 "user_name": "Anthony Garcia", // string or null (if the user didn't fill the profile section)

 "given_personal_data": [

 // description of what the user entered + justification for the platform to ask for those informations

 D3.4: Technology Bricks V3|Public

Page 50 ©Copyright ATC and other members of the CPN Consortium 2019

 { "description": "Email address", "purpose": "To contact the user" },

 {

 "description": "Name",

 "purpose": "Address the user in a more friendly/ personal way"

 },

 {

 "description": "Twitter handle",

 "purpose": "Get further insight on user preferences",

 "shared_with": ["TruthNest"]

 } // The shared key is only present for the data that are shared with 3rd-party

],

 "consents": [

 // description of what the user consented to + justification for the platform to collect them

 {

 "description": "Processing of user's location data",

 "purpose": "To recommend content based on user location"

 },

 {

 "description": "Processing of user's time usage data",

 "purpose": "To recommend content based on last user connection"

 },

 {

 "description": "Processing of user's preferences data",

 "purpose": "To generate personalised content"

 }

]

}

The service will always reply with a valid JSON. The format is either:

- { "error": "<Error message here>" } in case of failure

 D3.4: Technology Bricks V3|Public

Page 51 ©Copyright ATC and other members of the CPN Consortium 2019

- The result of the Mailgun sending API

4.6.5 Testing Scenarios

Both services have been written in TDD (Test Driven Development) and have a test coverage close to

100%. The scenarios tested are the different types of user requests (registration to the platform, changes in

the consents, manual requests of the PDR) and the different blockchain states (transaction succeeded, failed,

pending state…).

4.6.6 Installation and administration guidelines

Both services ship with a Dockerfile, that allow to run them in any Cloud platform supporting Docker or

on premises. The services follow the 12factors guidelines and should work with minimum maintenance.

Being stateless, they can be restarted automatically in case of crashes. They can be configured using

environment variables supplied to the containers. We also provide a Docker Compose file to start the project

aimed for development - although the Docker Compose file could be used in production, we don’t

recommend to do it, and to rather use Docker Swarm or Kubernetes to ensure duplication and availability

of the services. The blockchain-api also need a SQL database; we used postgres-sql for development and

production.

4.7 Producer's App

4.7.1 Overview

The third version of the Producer’s app, as well as including some minor fix respect on the previous

versions, extends the Producer’s Dashboard UI, provides some new APIs for handling contents and allows

to manage the “breaking news”.

Concerning the dashboard, three news sections were added:

• Dashboard

• Topics

• Freelancer

The Dashboard section includes an overview on the data collected for a specific news provider.

In particular, some different counts are shown: readings, likes and shares. For each counts the system

highlight from which “stream” the action becoming (recommender, most recent, popular), in order to

understand the performance of each stream.

For the readings, an extra chart with the timeline is provided and all the data are filterable by date.

 D3.4: Technology Bricks V3|Public

Page 52 ©Copyright ATC and other members of the CPN Consortium 2019

Figure 13: Overview on the data collected

The topic section provides the list of the trending topics for a specific news provider.

Figure 14: Trending topics for a specific news provider

Even in these new sections, all data can be downloaded in CSV format or extracted in JSON format via

REST APIs.

The management of the “breaking news” is now available on article list section. From this section, an

editor can now set an article as “breaking news” (see figure 15 below).

 D3.4: Technology Bricks V3|Public

Page 53 ©Copyright ATC and other members of the CPN Consortium 2019

Figure 15: Tag an article as "breaking news"

The producer’s app component now includes this information on the article data model and provides a

new API for retrieving a list of breaking news. Both these updates were needed in order to manage the

“breaking news” within the overall CPN platform.

4.7.2 Role

In the context of the CPN project, the third version of the producer’s app addresses the following user

requirements:

UR- PS2.1 - The system should allow for an easy integration into the producer’s workflow

UR- PS2.2 - The system should provide contract templates to allow freelancers to easily work together and

with editors, to define and track the scope of individual contributions and expected revenues

UR-PS2.3 - The system should allow producers contributions are used and distributed to readers

In addition, a new functionality, not initially expected but introduced as improvement of the CPN platform

is now supported: handling of “breaking news”.

4.7.3 Internal Architecture

No updates on the internal architecture of this module.

4.7.4 API

The following APIs were added on this version of the producer’s app:

Method URI Input Output Description

POST /v1/admin/article Article New Article Administration service (only news admin

can use this API). Create a new article on

the CPN system

GET /v1/breaking - List of articles Returns the list of breaking news for a

specific news provider

 D3.4: Technology Bricks V3|Public

Page 54 ©Copyright ATC and other members of the CPN Consortium 2019

These APIS are documented with OpenAPI specification6 (Swagger v2.0) and are testable via CPN API

gateway interface.

4.7.5 Testing Scenarios

Compared to the scenario already described for the previous version of the producer’s app, now an editor

has a complete overview on how users consume its own contents, [s]he can manage the “breaking news”

directly from the dashboard UI and s[he] can manage the licensing of the articles provided by freelancers.

All the testing scenarios described for the producer’s dashboard, will be evaluated internally to the

consortium and a detailed evaluation result will be provided together with the pilot 3 evaluation.

4.7.6 Installation and administration guidelines

No updates on the installation and administration guidelines with respect to the previous version.

5. CONCLUSIONS

This Deliverable reports on the implementation of the technological infrastructure of the third prototype

of the CPN platform. This is the last version of the platform components, however, there may be some

updates on the currently available components, APIs, and services as a result of the Pilot 3 iteration.

6. REFERENCES

[1] CPN: D1.1 User Requirements Model

[2] CPN: D2.1 CPN Reference Architecture

[3] CPN: D3.1 Initial Design & APIs of Technology Bricks

[4] CPN: D3.3: Technology Bricks V2

[5] CPN: D2.4: Open Virtual Platform V3

[6] CPN: D6.5 2nd Review Periodic Report

[7] Docker Container Platform

[8] Apache Kafka distributed streaming platform

[9] Processing tools or libraries for Natural Language Processing

[10] Apache Solr search server

[11] RESTful webservice

6 https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

https://www.docker.com/
https://kafka.apache.org/
https://towardsdatascience.com/nlp-engine-part-2-best-text-processing-tools-or-libraries-for-natural-language-processing-c7fd80f456e3
https://lucene.apache.org/solr/
https://searchapparchitecture.techtarget.com/definition/RESTful-API

