
 D3.3: Technology Bricks V2|Public

Page 1 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Grant Agreement No.: 761488

D3.3: Technology Bricks V2

This deliverable provides the technology bricks which have been planned for the second prototype of

the CPN platform.

 D3.3: Technology Bricks V2|Public

Page 2 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Work package WP 3

Task T3.1-T3.3

Due date 30/4/2019

Submission date 6/5/2019

Deliverable lead ATC

Version Final

Authors Nikos Sarris, Marina Klitsi, Stamatis Rapanakis (ATC)

Reviewers Ferdinando Bosco (ENG)

Keywords Technology Bricks, APIs, prototype 2

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 4/3/2019 Table of Contents Nikos Sarris, Marina Klitsi (ATC)

V0.2 21/3/2019 Initial version Nikos Sarris, Marina Klitsi, Stamatis Rapanakis (ATC),

Ferdinando Bosco (ENG), Matthias Strobbe (IMEC)

V0.3 19/4/2019 First completed version Nikos Sarris, Marina Klitsi, Stamatis Rapanakis (ATC),

Ferdinando Bosco (ENG), Matthias Strobbe (IMEC), Fulvio

D’Antonio (LIVETECH)

V0.4 22/4/2019 Final edits Nikos Sarris, Marina Klitsi, Stamatis Rapanakis (ATC),

Ferdinando Bosco (ENG), Matthias Strobbe (IMEC), Fulvio

D’Antonio (LIVETECH)

V0.5 24/4/2019 Reviewed version Ferdinando Bosco (ENG)

FINAL 6/5/2019 Completed version incorporating

all comments received

Nikos Sarris, Marina Klitsi, Stamatis Rapanakis (ATC),

Ferdinando Bosco (ENG), Matthias Strobbe (IMEC), Fulvio

D’Antonio (LIVETECH)

 D3.3: Technology Bricks V2|Public

Page 3 of 46

©Copyright ATC and other members of the CPN Consortium 2017

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any use that

may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to CPN project and Commission Services

 D3.3: Technology Bricks V2|Public

Page 4 of 46

©Copyright ATC and other members of the CPN Consortium 2017

EXECUTIVE SUMMARY

This deliverable reports on the work performed in WP3, which addresses the development of the

required technology bricks for the CPN Platform. Taking into account the user requirements, as

described in deliverable D1.1 “User Requirements Model”, this report presents the components and

services implemented for the second prototype of the platform.

The components & services which are being presented in this deliverable are classified in three main

categories (Content, Users, Mapping), based on their functionality as defined by the project’s

requirements. For each technology brick, a brief description of its functionality is provided, along with

API, test scenarios and installation guidelines.

The second prototype of the CPN platform includes the following 5 technology bricks, as described in

this deliverable.

It has to be noted that the Sentiment Analysis module has been replaced by the «Recommender AB-

Testing» module, provided by LIVETECH. Taking into account the users’ requirements and the

difficulty to extract data from social networks (due to GDPR), the Consortium decided to put more effort

on the development of the Recommender AB-Testing.

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Topic Extractor

Uplifting/Depressing Article Classifier

Recommender AB-Testing

Mapping Technology Bricks Twitter Analytics - TRUTHNEST

 D3.3: Technology Bricks V2|Public

Page 5 of 46

©Copyright ATC and other members of the CPN Consortium 2017

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 4

TABLE OF CONTENTS .. 5

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

1 INTRODUCTION.. 9

2 SUMMARY OF REQUIREMENTS FOR PROTOTYPE 2 .. 10

3 MODULES DESCRIPTION... 14

3.1 semantic lifting .. 14

3.1.1 Overview .. 14

3.1.2 Role .. 14

3.1.3 Internal architecture .. 14

3.1.4 API .. 14

3.1.5 Test scenarios .. 15

3.1.6 Installation and administration guidelines .. 15

3.2 topic extractor .. 16

3.2.1 Overview .. 16

3.2.2 Role .. 16

3.2.3 Internal architecture .. 16

3.2.4 API .. 17

3.2.5 Test scenarios .. 18

3.2.6 Installation and administration guidelines .. 18

3.3 UPLIFTING/DEPRESSING ARTICLE CLASIFIER ... 19

3.3.1 Overview .. 19

3.3.2 Role .. 19

3.3.3 Internal architecture .. 20

3.3.4 API .. 20

3.3.5 Test scenarios .. 21

3.3.6 Installation and administration guidelines .. 22

3.4 RECOMMENDER AB-TESTING .. 23

3.4.1 Overview .. 23

3.4.2 Role .. 23

3.4.3 Internal architecture .. 23

3.4.4 API .. 24

 D3.3: Technology Bricks V2|Public

Page 6 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.4.5 Test scenarios .. 26

3.4.6 Installation and administration guidelines .. 27

3.5 Twitter Analytics - TRUTHNEST ... 27

3.5.1 Overview .. 27

3.5.2 Role .. 27

3.5.3 Internal architecture .. 27

3.5.4 API .. 27

3.5.5 Test scenarios .. 30

3.5.6 Installation and administration guidelines .. 30

4 UPDATES ON THE AVAILABLE BRICKS ... 31

4.1.1 PRODUCER’S APP – V2 ... 31

4.1.2 Role .. 31

4.1.3 Internal architecture .. 32

4.1.4 API .. 32

4.1.5 Test scenarios .. 32

4.1.6 Installation and administration guidelines .. 32

4.1.7 READER’S APP – V2 .. 33

5. FOLLOW-UP OF RECOMMENDATIONS AND COMMENTS FROM PREVIOUS

REVIEW(S) ... 38

5.1 Language dependency in CPN bricks .. 42

6. CONCLUSIONS .. 45

7. REFERENCES ... 46

 D3.3: Technology Bricks V2|Public

Page 7 of 46

©Copyright ATC and other members of the CPN Consortium 2017

LIST OF TABLES

TABLE 1: SECOND PROTOTYPE REQUIREMENTS .. 10

TABLE 2: SECOND PROTOTYPE TECHNOLOGY BRICKS ... 13

TABLE 3: PERFORMANCE OF DIFFERENT MODELS .. 22

TABLE 4: LIST OF REQUIREMENTS UNDER QUESTION ... 40

 D3.3: Technology Bricks V2|Public

Page 8 of 46

©Copyright ATC and other members of the CPN Consortium 2017

LIST OF FIGURES

FIGURE 1: UPLIFTING/DEPRESSING ARTICLE CLASIFIER –DATASET SPLITTING 22

FIGURE 2: PRODUCER'S APP – WEB DASHBOARD ARTICLES ANALYTICS SECTION 31

FIGURE 3: PRODUCER'S APP STACK DEPENDENCIES .. 33

FIGURE 4: NOTIFICATION MESSAGE (WHEN THE BROWSER HAS THE USER'S FOCUS) 33

FIGURE 5: BROWSER NOTIFICATION MESSAGE .. 34

FIGURE 6: DEFINED AND EXCLUDE TOPICS .. 34

FIGURE 7: NEWS CONFIGURATION .. 34

FIGURE 8: USER ACTIVITY .. 35

FIGURE 9: REGISTRATION FIELDS .. 35

FIGURE 10: EDIT USER PROFILE SETTINGS ... 36

FIGURE 11: JUSTIFICATION FIELDS ... 37

 D3.3: Technology Bricks V2|Public

Page 9 of 46

©Copyright ATC and other members of the CPN Consortium 2017

1 INTRODUCTION

This Deliverable contains the basic description of the technological infrastructure of the 2nd prototype

of the CPN platform which is composed by what we call 'technology bricks'. The components, APIs,

and services included in the second version of the platform customization infrastructure and

components, and described in this deliverable have been designed and developed according to the user

requirements, as described in deliverable D1.1 “User Requirements Model”.

The CPN project foresees three releases of the 'technology bricks' in order to be available for the related

pilots. Each release includes specific functionalities, chosen after a process of evaluation and

prioritization of the user requirements. Starting from the reference architecture document (D2.1), the

second versions of the technology bricks have been implemented and reported in this document. This

version of the bricks is the second one of a cycle of three iterations and will offer a series of features in

order to test the related bricks in a pilot environment.

The main goal of this document is to present the technology bricks that are foreseen at this point of the

project necessary to satisfy the user requirements expected for the second pilot iteration. For each

technology brick, a brief description of its functionality is provided, along with API, test scenarios and

installation guidelines. In addition to the new technology bricks implemented, this deliverable also

describes the updates of the already deployed technology bricks, highlighting new features implemented

and how these bricks satisfy the user requirements.

Furthermore, the document provides a follow up of the comments received from the Reviewers during

the 1st Review of the project.

The structure of the deliverable is organized as follows: Section 2 provides an overview of the

requirements for the 2nd prototype, Section 3 describes the CPN technology bricks infrastructure, Section

4 provides updates of the already available technology bricks, and Section 5 provides a follow up of the

recommendations of the Reviewers. Finally, section 6 concludes this document.

 D3.3: Technology Bricks V2|Public

Page 10 of 46

©Copyright ATC and other members of the CPN Consortium 2017

2 SUMMARY OF REQUIREMENTS FOR PROTOTYPE 2

We enlist here the requirements foreseen for the second prototype along with the list of the modules that

have been necessary for satisfying these requirements.

PROTOTYPE 2

Table 1: Second prototype requirements

Requirement category Requirement ID Requirement description

UR-UP1: Interests

(Categories, Entities,

Values): What topics is the

user interested in?

UR- UP1.4

The system should refine the user’s interests

through frequent interaction with the user

(talkback)

UR-UP1.5

The system should refine the interests based on

the user’s behaviour on social networks (through

data upload or connection of the networks)

UR-UP2: Network: Making

use of connections the user

already has through social

media.

UR-UP2.1

The system should allow for social media

integration to recommend content based on what

connections like, read and share

UR-UP2.2

The system should offer a recommendation of

articles based on most liked/most shared numbers

from a user’s network and beyond that. (Nuzzle-

Feature)

UR-UP2.3

The system should allow for social media

integration to keep track of what the user has

already seen elsewhere.

UR-UP2.4

The system should be able to analyse whom a user

has been most interacting with on social media to

prioritize the users for the personalisation on

social media to prioritize the users for the

personalisation

UR-UP2.5
The system should allow the user to down-/upload

their network connections through user account.

UR-UP2.6
The system should allow users to search for other

users on social media to build direct connections

UR-UP 3: Time & Length:

When does the user prefer

to consume content and for

how long?

UR- UP3.1

The system must allow the user to choose a

preferred time frame or frames to consume

content

UR- UP3.2
The system should create/refine time frames

based on the user’s consumption habits

UR- UP3.3

The system should refine the user’s time frames

through frequent interaction with the user

(talkback)

UR-UP3.4

The system should use the time frames in order to

decide how many items of what length and of

what format it offers to the user length and of

what format it offers to the user

UR- UP3.5
The system must allow the user to postpone a time

frame for a chosen amount of time.

UR- UP3.6
The system must allow the user to ignore a time

frame completely

 D3.3: Technology Bricks V2|Public

Page 11 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

UR-UP3.7
The system should learn from these user

responses and adjust its offerings accordingly

UR-UP 5: Location &

Surroundings: Where is the

user and what's going on

around him/her?

UR-UP5.1

The system should make use of the location data

of the user (permission of the user granted) to

choose the right content for the user

UR- UP5.2
The system should allow the user to set a

home/main interest location

UR-UP5.3

The system should make use of the location data

of the user to determine the best point in time to

offer content

UR-UP5.4

The system should try to determine the

surroundings of the user based on either just

location data or location data and direct

interaction with the user (talkback)

UR-UP5.5

The system must give the user an easy option to

agree to or withdraw from using location data for

personalised offers

UR-UP 6: Knowledge

(Management): What does

the user already know?

UR-UP6.1

The system must keep track of what content the

user has already consumed on a piece and on a

content basis within CPN and beyond

UR-UP6.2

The system must keep track of how much of each

item users consume, where they stop, continue

and what they skip

UR-UP6.3

The system should interact with the user in order

to refine user interests in regards to why

something was skipped or something was

consumed completely

UR-UP 8: Importance for

user: What is relevant for

the user, outside their given

interests?

UR-UP8.2

The system should always offer content that has a

direct influence on the users (e.g. life-

threatening), overruling other interest settings

UR-UP 9: User Profile

Management: Giving the

user transparency and

control over their data

UR-UP9.3

The system must give the user a full overview of

his/her data and allow them full control, including

update and removal of data

UR-UP9.4
The user must be able to change and overwrite

settings in their profile

UR-UP9.5

The user must be able to download their profile

data in CPN in a machine readable format and a

user friendly format

UR-AF 1: Bursting the

Filter Bubble: How can

CPN avoid filter bubbles

and echo chambers?

UR-AF1.6

The system should offer the user a random news

selection upon request based on certain data and

preferences of the users profile, which the user

can choose

UR-AF2: Avoiding FOMO:

How to ensure people think

they know everything there

is to know

UR-AF2.1
The system should show users who else from their

network has consumed the same content item.

UR-AF2.2
The system should show users what else their

network has shown, if there are differences

UR-AF2.3
The system should be able to show users the

content item from another user (anonymously)

 D3.3: Technology Bricks V2|Public

Page 12 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

 UR- AF2.5

Once all articles proposed have been consumed,

the system should only offer more content upon

request by the users

UR-AF 3: Content/Format:

In which way do we have

to prepare content for the

user?

UR-AF3.7

The system should be able to give the user a

timeline overview of events regarding a specific

topic

UR-AF 5: Transparency:

Giving the user control &

understanding over the

content he sees.

UR-AF5.1
The system must offer the user an easy to access

and easy to understand overview of their profile

UR-AF5.2
The system must offer users easy access to their

profile in order to change settings and data

UR- AF5.3 The system must make it transparent to the users

why they are shown certain content, based on an

item level

UR-AF 6: Archive: Making

content available beyond

the moment

UR-AF6.1
The system must allow users to access content

again that they have already opened before

UR-AF6.2

The system should allow users to consume

content beyond their predefined timeframe after

an interaction with the user (talkback)

UR-AF6.3
The system should allow users to actively save

articles for later consumption

UR-AF 7: User Feedback:

Asking users to help

improve the system

UR- AF7.2

The system should include guided feedback for

specific elements of the system, allowing users to

(help) improve it

UR-AF 8: Temporary

Categories: Users can

temporarily change the

personalisation algorithm

UR-AF8.1
The system should allow users to search for

specific topics they are temporarily interested in

UR-AF8.2
The system should allow users to add this search

as a temporary personalisation category

UR-AF8.3
The system should allow users to define a specific

time frame for this temporary change

UR-AF 9: Mute topics:

Exclude topics from the

personalisation for a certain

time

UR-AF9.1

The system should allow users to define keywords

and logical combinations of them to exclude

content from their personalisation

UR-AF9.2
The system should allow users to define a time

frame per keyword/logical combination

UR-AF9.3
The system should be able to overwrite this

exclusion for important breaking rules

UR-PS 1: Detailed

Analytics: Giving

Newsrooms a more detailed

feedback on their audience

UR-PS1.1
The system should show the access to items

through users by numbers (who, when, how long)

UR-PS1.3
The system should show which topics were most

interesting to users

UR-PS 2: Integration: How

should CPN be connected

to the production side?

UR- PS2.4

The system should allow producers to export the

record of their publications through standardized

and interoperable formats

UR- PS2.5

 The system should allow for an easy contribution

of content from different publishers through

standardised interfaces

 D3.3: Technology Bricks V2|Public

Page 13 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

UR- PS2.7
The system should allow editors to easily add

missing attributes to articles manually

Foreseen necessary technology bricks

The technology bricks necessary for the 2nd prototype are illustrated in the shaded cells (in blue) of the

table below. It has to be noted that the bricks in the shaded cells, in orange, have already been delivered

as part of the 1st CPN prototype.

Table 2: Second prototype technology bricks

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Relation Extraction

Topic Extractor

Uplifting/Depressing Article Classifier

Frame Based Slot-Filling System

Recommender AB-Testing

Users Technology Bricks

User Modelling

Reader's App - TRULY MEDIA

Personal Data Receipts

Mapping Technology Bricks

Producer's App - CUTE4LE

Reward Framework

Twitter Analytics - TRUTHNEST

Recommender

 D3.3: Technology Bricks V2|Public

Page 14 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3 MODULES DESCRIPTION

This section describes the modules needed to implement the 2nd prototype of the CPN platform.

3.1 SEMANTIC LIFTING

3.1.1 Overview

The Semantic Lifting module allows extracting knowledge graphs from existing data. The resulting

knowledge graph is richer content-wise than the existing data and can be used by other modules to

achieve better results when compared to using the existing data directly.

3.1.2 Role

The Semantic Lifting is used by the Recommender to provide better recommendations to the user,

because of the rich knowledge that is extracted from the existing data. Additionally, this module can

also be used by other systems/partners in use cases that are independent of the Recommender. When

looking at the second prototype, this module does not directly address a requirement, but it indirectly

contributes to the requirements that are addressed by the Recommender.

3.1.3 Internal architecture

This module extract a knowledge graph from existing data with as goal to semantically lift this data.

How a knowledge graph is generated is determine by a set of rules that can be easily updated to support

different types of data. Internally, the module uses RML1 rules to define how the knowledge graphs are

generated; the module that provide a Web API to RMLMapper2 , which executes these rules; and

Comunica3 to expand the knowledge graph with additional knowledge.

3.1.4 API

/rules/{rulesId}

 HTTP GET

 accept: text/turtle

 output: Turtle representation of the RML rules with id “rulesId”

/rules/{rulesId}

 HTTP POST

 content-type: text/turtle

 input: Turtle representation of the RML rules that need to be stored with id “rulesId”

/rules/{rulesId}/extract

 HTTP POST

 content-type: application/json

 accept: text/turtle

 input

o path

1 http://rml.io

2 https://github.com/RMLio/rmlmapper-java
3 https://github.com/comunica/comunica

http://rml.io/
https://github.com/RMLio/rmlmapper-java
https://github.com/comunica/comunica

 D3.3: Technology Bricks V2|Public

Page 15 of 46

©Copyright ATC and other members of the CPN Consortium 2017

 rulesId (required): the id of the RML rules that need to be used to extract the

knowledge graph.

o Body (required): JSON object with an key-value for each existing data source, where

the key is the name of the data source used in the rules and the value the data in

text/plain. This can be CSV, XML, and JSON.

 output: Turtle4 representation of the knowledge graph

/rules/{rulesId}/extract/list

 HTTP POST

 content-type: application/json

 accept: text

 input

o path

 rulesId (required): the id of the RML rules that need to be used to extract the

knowledge graph.

o Body (required): JSON object with an key-value for each existing data source, where

the key is the name of the data source used in the rules and the value the data in

text/plain. This can be CSV, XML, and JSON.

 output: a comma-separated list of terms that characterize the content of the extracted knowledge

graph.

MISSING: The API testing plan and report, which sets the scope of the identified test scenarios and lists

the set of module functionalities being addressed with this API. (Will be added by the end of April

2019).

3.1.5 Test scenarios

/rules/{rulesId}

 Check that the correct rules are returned when doing a GET and the rules id is valid.

 Check that the correct error is returned when doing a GET and the rules id is invalid.

 Check that the correct rules are stored when doing a POST and the rules and rules id are valid.

 Check that the correct error is returned when doing a POST and the rules are invalid.

 Check that the correct error is returned when doing a POST and the rules id is invalid.

/rules/{rulesId}/extract

 Check that correct knowledge graph is returned for example data and rules id.

 Check that correct error is returned when rules id is provided.

 Check that correct error is returned when no data is provided.

/rules/{rulesId}/extract/list

 Check that correct list is returned for example data and rules id.

 Check that correct error is returned when no rules id is provided.

 Check that correct error is returned when no data is provided.

3.1.6 Installation and administration guidelines

Installation and administration guidelines and the respective usage guide will be provided by the end of

April 2019).

4 https://www.w3.org/TR/turtle

https://www.w3.org/TR/turtle

 D3.3: Technology Bricks V2|Public

Page 16 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.2 TOPIC EXTRACTOR

3.2.1 Overview

The module is used to extract topics from articles in order to have a concise representation of the content

of the article to be exploited by the recommender module.

It is able to perform domain independent terminological, taxonomical and ontological extraction from

unstructured sources using metrics and strategies based on statistical, linguistics and extra-linguistic

features (e.g. text. The text-extraction sub-module is able to extract text from heterogenous documents

including PDFs, web pages, ms-office files, xml, etc. It also provides the possibility of extracting text

from scanned PDF documents via state-of-the-art OCR technologies (tesseract v4.x5). The tool can be

used to automatically build a domain terminology/ontology from unstructured sources that can be later

used for document annotation and retrieval; the terminological candidates are multiword expressions

that are filtered through different stages of scoring. In the context of CPN it will be used to constantly

enrich a list of emerging topics from news corpora and annotating incoming news according to this topic

list.

3.2.2 Role

The module is operating at the backend level of the CPN platform. It is deployed as a microservice but

it is not exposed through the API gateway but it is only queried by integration microservices.

The structure of the flow is the following:

 New content is ingested periodically by the platform by querying the publishers API/RSS/feeds

 The new content is posted on the CPN message broker (Apache Kafka)

 A worker module is listening for new messages on the broker and as soon as it receives them it

calls the Topic Extraction module by passing the content of the article to it (in the form of a

JSON message)

 The Topic Extraction Module performs a language detection in order to apply the most suitable

Natural Language Processing techniques to extract terminological candidates (topics)

 Topics are filtered and finally ranked according to TF/IDF score and the article, enriched with

these topics, is saved into its final storage (Apache SOLR) to be retrieved later during the

recommendation phase.

The module addresses the user requirement UR-UP1 (Interests: What topics is the user interested in?)

3.2.3 Internal architecture

The module is realized in python using Flask and several Natural Language Processing libraries:

 NLTK: it provides easy-to-use interfaces to over 50 corpora and lexical resources such as

WordNet, along with a suite of text processing libraries for classification, tokenization,

5 https://en.wikipedia.org/wiki/Tesseract

https://en.wikipedia.org/wiki/Tesseract

 D3.3: Technology Bricks V2|Public

Page 17 of 46

©Copyright ATC and other members of the CPN Consortium 2017

stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP

libraries, and an active discussion forum.

 Treetagger6: it is a tool for annotating text with part-of-speech and lemma information. It was

developed by Helmut Schmid in the TC project at the Institute for Computational Linguistics of

the University of Stuttgart. The TreeTagger has been successfully used to tag German, English,

French, Italian, Danish, Dutch, Spanish, Bulgarian, Russian, Portuguese, Galician, Greek,

Chinese, Swahili, Slovak, Slovenian, Latin, Estonian, Polish, Romanian, Czech, Coptic and old

French texts and is adaptable to other languages if a lexicon and a manually tagged training

corpus are available.

 Polyglot: a natural language pipeline that supports massive multilingual applications.

The module is organized in the following way:

 Service layer: this layer receives the user requests and performs the conversion of the

parameters, JSON body and validate them. It then transforms such parameters into appropriate

python objects and passes them to the business layer for elaboration. After it receives the

response from the business layer it converts it back to a JSON response and gives it back to the

client.

 Business layer: based on the user request, as converted by the service layer, it examines the text

provide and extracts topics in an unsupervised way by using a noun phrase chunking to build

syntactically plausible terminological noun phrases, NPs (e.g. compounds "credit card",

adjective-NPs "local tourist information office", and prepositional-NPs "board of directors").

One of the most useful sources of information for NP-chunking is part-of-speech tags. This is

one of the motivations for performing part-of-speech tagging in our information extraction

system. In order to create an NP-chunker, we will first define a chunk grammar, consisting of

rules that indicate how sentences should be chunked. In CPN case, we define several grammars

by using regular-expressions rules.

The module is invoked directly by a worker (listening to messages on the Kafka broker). The results are

then stored on the enriched content storage (Apache SOLR).

3.2.4 API

The Topic Extractor module provides a single API to be used only by internal microservices:

Topic Extraction API

Method HTTP Request Description

POST /extract Extract topics from body content

Input format: the service is expecting textual data in one of the currently supported languages (English,

German, Greek, Dutch) enclosed into a json object with single text key:

{“text”: “Donald Trump, the president of US,....”}

6 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

 D3.3: Technology Bricks V2|Public

Page 18 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.2.5 Test scenarios

The service has been tested on the articles provided by the consortium partners. In the following table

we show an example of the JSON output of the service applied to a Dutch document:

{

 "tags_txt":["Politiek"],

 "tags_ss":["Politiek"],

 "other_tags_txt":["naar eigen zeggen",

 "geschrokken van",

 "zelfs kwaad",

 "het thema diversiteit",

 "hij voor",

 "dat vlak heb ik",

 "te leren"],

 "other_tags_ss":["naar eigen zeggen",

 "geschrokken van",

 "zelfs kwaad",

 "het thema diversiteit",

 "hij voor",

 "dat vlak heb ik",

 "te leren"],

 "entities_txt":["v",

 "gent",

 "gent mieke van hecke",

 "veli yüksel",

 "open vld",

 "hecke",

 "open vld"],

 "entities_ss":["v",

 "gent",

 "gent mieke van hecke",

 "veli yüksel",

 "open vld",

 "hecke",

 "open vld"],

 "id":"5c7962c68de42b1e00c107e1",

 "url_s":"https://vrtnws.be/p.L7neGe3bE",

 "origin_s":"VRT",

 "date_dt":"2019-03-01T16:41:37Z",

 "_version_":1626877960665432064}

3.2.6 Installation and administration guidelines

The module is deployed as a docker container into the CPN orchestration platform

 D3.3: Technology Bricks V2|Public

Page 19 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.3 UPLIFTING/DEPRESSING ARTICLE CLASIFIER

3.3.1 Overview

The eventual application of this module is in balancing lists of suggested articles: a substantial fraction

of news items are typically viewed negatively (e.g., conflicts, disasters, accidents) and thus

“depressing”. To balance this, we need positive, or “uplifting” articles to be interspersed in a suggested

reading list.

The idea of this component was to build a text classifier, which takes as input an article, and classifies

the article as “depressing” vs “uplifting”, or “neutral”. The definition of what exactly is “uplifting” and

“depressing” was hard to specify upfront, and thus was refined/defined by collecting annotations from

users. This pragmatic approach was adopted to maximize both (a) feasibility as well as (b) relevance for

the content providers.

In order to train the model, we hired two job students in order to annotate 9,533 news articles. This

annotated set was split into train (80%), development (10%) and test (10%) sets in order to train and

tune the models.

We trained the models to predict the probability of a particular article to be depressing, neutral and

uplifting. As our main classifier we used logistic regression ([1]). We also tried and report results for

linear SVM classifier ([2]). As features, we used TF-IDF weighted bag of words ([3]). The models were

trained on a train set and tuned on a validation set. The unbiased evaluation of a final model fit was

performed on a test set.

3.3.2 Role

The module realizes a Content Technology Brick, as identified for Prototype #2 in D3.1 (“Initial design

and APIs of Technology Bricks”). It is an independent brick, taking as input an article, and outputting

the probability scores of each of the classes (depressing, neutral and uplifting). This uplifting/depressing

score can be used in a reader app to filter/balance a (recommended) list of articles to read.

Specifically, the module addresses the following user requirements (see Table for Prototype #2 in Sec.

2 of D3.1):

 UR-AF 1: Bursting the Filter Bubble: How can CPN avoid filter bubbles and echo chambers?

The uplifting/depressing scores can be used to balance the news by, e.g., (i) balancing ‘bad’

news on certain topics, which may otherwise form the majority of news the user may have

consumed, with more positive notes, or (ii) expand the coverage of news by including a mixture

of uplifting/depressing news items, which inherently may cover a more diverse set of topics

than a user’s inherent interest sphere (see also next point)

 UR-UP1: Interests (Categories, Entities, Values): What topics is the user interested in? The user

may be (possibly inadvertently) mostly following given topics, which can be dominated by

mostly neutral or even ‘bad’ news. By including positive, i.e., uplifting, news items, the user

interest may be expanded, and retention of users in the news app/site may thus be positively

affected.

 D3.3: Technology Bricks V2|Public

Page 20 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.3.3 Internal architecture

Features and Functionalities:

This module is composed by the following components:

1. Parser and annotations loader: the news articles used to train the model are extracted from the

dumps of Deutsche Well news and merged with the annotations. The final data set contains the

title, body and the url of the article as well as the annotation (depressing, neutral or uplifting).

This is done inside the collect_data.py python module.

2. Model builder: the model is built using the training set and choosing the model with the best

results on development set. This is done in the baseline_predictor.py python module.

3. Predictor API: this is the API component that loads the model created by Model builder

component and makes it available to use through API calls and also through Front-end demo

interface (see next point) component. The code for this component is located in the

wse_server.server.py python module.

4. Front-end demo interface: the demo of the functionality is available through a web front-end

interface that is implemented in the wse_server.templates.wse_frontend.html and the

wse_server.server.py Flask html modules.

Note that for the actual classification functionality, only the trained model (i.e., item 3) is relevant; it is

demonstrated through item 4. Items 1-2 are used internally to build the model. These are not exposed

through an external API towards other components in the CPN pipeline.

Dependencies on External Components:

This module depends on the following external technologies/components:

 Google translation API: this API is used to translate the input article to English in order to

perform classification (for non-English content)

 Machine Learning: the python sklearn machine learning library was used to train and tune the

baseline models (in the Model Builder, item 2)

 Flask: this is a python micro web framework that allows to integrate the front-end demo (see

above, item 4)

3.3.4 API

The following are the specification of the REST API provided operation in order to classify a particular

article in depressing, neutral or uplifting:

 URL: /cpn_uplifting

 HTTP Method: POST

 Input JSON content: the content of the news article needs to be passed via JSON in a field called

article. The title of the article has to be separated with a “
” tag from the body. The following

is a very short illustrative example:

 D3.3: Technology Bricks V2|Public

Page 21 of 46

©Copyright ATC and other members of the CPN Consortium 2017

{“article”: “Title of the article
 Content of the article”}

• Output JSON content: the output is a JSON file with the following fields:

o confidence: the confidence of the model for different news types (depressing, neutral or

uplifting) for the passed article.

o language: the detected language of the passed news article.

o predicted: the most likely news article classification.

o translation: if the detected language of the article is not English, then the English translation

of the article will be returned in this field.

The following is an example of the returned JSON:

{

 "confidence": {

 "depressing": 0.21412511135910173,

 "neutral": 0.18024488452392834,

 "uplifting": 0.6056300041169699

 },

 "language": "en",

 "predicted": "uplifting",

 "translation": null

}

3.3.5 Test scenarios

We have built a dataset based on user annotations of a selection of news articles. This dataset consists

of a total of 9,533 annotated news articles. The data is split into:

 Train set: this is the biggest set containing 80% of the data. It is used to train the model.

 Development set: this set contains 10% of the data and is used to tune the model’s hyper-

parameters in order to make it more performant.

 Test set: this set contains 10% of the data and is used to get an unbiased evaluation of a final

model fit on the training dataset.

 D3.3: Technology Bricks V2|Public

Page 22 of 46

©Copyright ATC and other members of the CPN Consortium 2017

The following graph illustrates the train/development/test set split:

We observe an uneven distribution of categories, being the uplifting one with fewest number of data

points. This makes the classification problem more challenging.

Figure 1: UPLIFTING/DEPRESSING ARTICLE CLASIFIER –Dataset Splitting

The current model achieves an accuracy of 0.72. The following table illustrates the performance of the

different models:

Model Accuracy Precision UP Recall UP F1 UP

Logistic Regression 0.72 0.51 0.29 0.37

SVM 0.72 0.43 0.29 0.35

Binary SVM 0.86 0.45 0.35 0.40

Table 3: Performance of different models

3.3.6 Installation and administration guidelines

At the moment, the model is executed locally and on an internal imec server. A docker installation

package in order to be deployed on any machine will be provided.

 D3.3: Technology Bricks V2|Public

Page 23 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.4 RECOMMENDER AB-TESTING

3.4.1 Overview

The module is used to be able to test different versions of the recommender at the same time on different

user groups in order to compare the behaviour of different approaches to content personalization. Every

publisher is able to create an unlimited number of groups and recommenders and to associate a specific

recommender to a group. A/B testing can produce concrete evidence of what actually works in

personalization. The module can be used for continuously testing new techniques and approaches in

order to optimize conversion rates and gain a better understanding of the customers.

3.4.2 Role

The module is tightly integrated with the Recommender module and exposes an API that allow every

publisher to create recommenders and user groups. It is a “configuration” module and recommenders

and groups can be created and modified in any moment by publisher/administrators of the platform.

Recommenders can be created by instantiating the ones currently offered by the platform i.e.:

 Content-based recommendation: based on unsupervised keyword extraction and named entity

extraction, semantic uplifting techniques etc.

 Collaborative filtering techniques: assessing users consumption history similarity

 Most Popular Recommendations: recommendations based on trending items

 Random recommendations: to add variety to the recommendations

 Composite recommender: quota based combinations of the above techniques

User groups are created by specifying a name for the group and then, by calling a specific API, users

are added to groups by specifying their user ids. The AB-Testing interacts with two modules of the CPN

platform: the already mentioned Recommender module and the API Gateway that is needed to publicly

expose this internal API to publishers.

The module covers a special case of the requirement UR-PS 1 (Detailed Analytics: Giving Newsrooms

a more detailed feedback on their audience) since it allows the newsrooms to experiment with different

recommendation approaches, collect different feedbacks and formulate insights.

3.4.3 Internal architecture

The module is realized in python using Flask and PyMongo libraries. The module is organized in the

following way:

 Service layer: this layer receives the user requests and performs the conversion of the

parameters, JSON body and validate them. It then transforms such parameters into appropriate

python objects and passes them to the business layer for elaboration. After it receives the

response from the business layer it converts it back to a JSON response and gives it back to the

client.

 D3.3: Technology Bricks V2|Public

Page 24 of 46

©Copyright ATC and other members of the CPN Consortium 2017

 Business layer: based on the user request, as converted by the service layer, it prepares the

queries or the data to be written in the database (by invoking Recommender Factories). The

implementation of the Recommender Factory is as follows:

def factory(request):

 if isinstance(request, RandomRecommenderRequest):

 return

MostRecentRecommender(None,relative=relativedelta(days=request.days),storage=AppConfig.ITEM

_DAO,users=AppConfig.USERS_DAO)

 if isinstance(request, ContentBasedRecommenderRequest):

 return

CBRecommender(None,relative=relativedelta(days=request.days),solr_dao=AppConfig.ITEM_DAO,

user_dao=AppConfig.USERS_DAO)

 if isinstance(request, CollaborativeFilteringRecommenderRequest):

 return

CFRecommender(None,relative=relativedelta(days=request.days),solr_dao=AppConfig.ITEM_DAO,u

ser_dao=AppConfig.USERS_DAO)

 if isinstance(request, CompositeRecommenderRequest):

 if not request.sorting:

 request.sorting="score"

 return CompositeRecommender(None, quotas=[RecommenderQuota(factory(recc),v) for (recc,v)

in request.quotas],sorting=request.sorting)

 raise Exception("%s not supported"%request)

 Data layer: it performs the actual queries on the MongoDB storage by means of a DAO class.

The interface of the DAO class is described in the following table

class ABTestingDAO:

 def add_to_group(self,group,user_id):

 raise NotImplementedError()

 def map_group_recommender(self,group,recommender_id):

 raise NotImplementedError()

 def recommender_for_user(self,user_id):

 raise NotImplementedError()

The module is interacting with the Recommender module and uses as a storage engine MongoDB

3.4.4 API

CPN is a multi-tenant platform for content personalization: each tenant (for example the consortium

partners DW, VRT and DIAS) has full control on the type of recommendations and user groups. This

API is not available to the end-users but only to platform tenants (publishers/media companies)

 D3.3: Technology Bricks V2|Public

Page 25 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Recommender management API

Method HTTP Request Description

POST /admin/<tenant>/recommenders Create a new recommender for the tenant.

Method HTTP Request Description

GET /admin/<tenant>/recommenders List all the recommenders defined by a

specific tenant.

Method HTTP Request Description

GET /admin/<tenant>/recommenders/<id> Retrieve and show a recommender given its

id.

Method HTTP Request Description

DELETE /admin/<tenant>/recommenders/<id> Delete a recommender given its id

Method HTTP Request Description

GET /admin/<tenant>/users/<userid> Retrieve the recommender used to

personalize content of a specific user.

Groups management API

Method HTTP Request Description

PUT /admin/<tenant>/users/<userid>/<gr

oup>

Adding a user to a specific user group.

Method HTTP Request Description

GET /admin/<tenant>/groups List all the groups defined by a specific

tenant

Method HTTP Request Description

GET /admin/<tenant>/map/<group> Retrieve the recommender used to

personalize content of a specific group.

Method HTTP Request Description

 D3.3: Technology Bricks V2|Public

Page 26 of 46

©Copyright ATC and other members of the CPN Consortium 2017

DELETE /admin/<tenant>/groups/<group> Delete a user group.

Recommender/groups mapping API

Method HTTP Request Description

PUT /admin/<tenant>/map/<group>/<reco

mmender_id>

Associate a recommender to a specific group

3.4.5 Test scenarios

In the following table we show a typical json request that can be used to create a composite recommender

combining three techniques (Content-based, Collaborative Filtering and Random) with 33%/33%/34%

quotas.

POST /admin/<tenant>/recommenders

{/admin/<tenant>/recommenders

 "__class__": "CompositeRecommenderRequest",

 "quotas": [

 [

 {

 "__class__": "ContentBasedRecommenderRequest",

 "days": -0.041666666666666664

 },

 0.33

],

 [

 {

 "__class__": "CollaborativeFilteringRecommenderRequest",

 "days": 0.041666666666666664

 },

 0.34

],

 [

 {

 "__class__": "RandomRecommenderRequest",

 "days": 0.041666666666666664

 },

 0.33

]

],

 "sorting": "date"

}

The output of this call will be a string representing a new recommender id (for example

id=5cb903a7c72eacb74cc93b42).

If we have defined a group test we can associate this new recommender to the group by executing the

following call:

PUT /admin/VRT/map/test/5cb903a7c72eacb74cc93b42

that can be read in this way: the tenant VRT is giving to the group test the recommendations produced

by the recommender 5cb903a7c72eacb74cc93b42.

 D3.3: Technology Bricks V2|Public

Page 27 of 46

©Copyright ATC and other members of the CPN Consortium 2017

3.4.6 Installation and administration guidelines

The module is deployed as part of the recommender module. So the installation guidelines follow the

one already described for that module (deployment as a docker container into an orchestration platform).

3.5 TWITTER ANALYTICS - TRUTHNEST

3.5.1 Overview

The module provides information about the entities of the most important Twitter accounts a user

follows. It also provides information about the user’s network activity. The output also includes the

user’s subscribed lists and profile information. With this information, the social network profile of the

user can be determined and used to improve the recommendation

3.5.2 Role

The module takes as input the Twitter handle of the user (screen name) and produces a json response

that is submitted to a Kafka topic that the Recommender listens to.

The requirements addressed by this module are UR-UP 2.1 - UR-UP 2.6 (UR-UP2: Network – Making

use of connections the user already has through social media).

3.5.3 Internal architecture

The module is a based on a Spring Boot web application that contains an embedded Tomcat. Like all

the other project modules, it is delivered as a Docker image. The input of the module is a json object

containing the user’s Twitter username, the user’s id on the CPN platform, as well as a pair of Twitter

access tokens. There are used to call the Twitter REST API and fetch data from Twitter. The tweets are

analysed with the use of the Stanford NLP library to extract the named entities. The most important 5

accounts that the user follows are included in the results, to reveal what the users is interested to.

The Stanford NLP library has been included in the project as a maven dependency.

3.5.4 API

The module offers a REST API to accept new requests. The method uses json web tokens to validate

the input. In case of an error (for example a Twitter rate limit exception), an exception is thrown with

an appropriate explanation message. Both input and output of the module are json objects. No user data

are stored and no results caching exists.

Example output:

{

 "cpnUserId": "5b8fe613e7cffb000a11bafa",

 "profile": {

 "status": {

 D3.3: Technology Bricks V2|Public

Page 28 of 46

©Copyright ATC and other members of the CPN Consortium 2017

 "code": 1,

 "message": "Computed result."

 },

 "user": {

 "userId": 18117445,

 "screenName": "stamrapanakis",

 "fullName": "Stamatis Rapanakis",

 "profileImage":

"https://pbs.twimg.com/profile_images/874620915849539585/WrqEOzMI_normal.jpg",

 "location": "Athens, Greece",

 "verified": false,

 "description": "Software Engineer, Athens, Greece.",

 "url": "",

 "followersCount": 26,

 "listedCount": 0,

 "utcOffset": "",

 "createdAt": 1229268015000,

 "language": "en",

 "friendsCount": 78,

 "postsCount": 115,

 "entities": [

],

 "subscribedLists": [

],

 "topFriends": [

 {

 "userId": 6253282,

 D3.3: Technology Bricks V2|Public

Page 29 of 46

©Copyright ATC and other members of the CPN Consortium 2017

 "screenName": "TwitterAPI",

 "fullName": "Twitter API",

 "profileImage":

"https://pbs.twimg.com/profile_images/942858479592554497/BbazLO9L_normal.jpg",

 "location": "San Francisco, CA",

 "verified": true,

 "description": "The Real Twitter API. Tweets about API changes, service issues and our

Developer Platform. Don\u0027t get an answer? It\u0027s on my website.",

 "url": "https://developer.twitter.com",

 "followersCount": 6140062,

 "listedCount": 12993,

 "utcOffset": "",

 "createdAt": 1179900073000,

 "language": "en",

 "friendsCount": 12,

 "postsCount": 3654,

 "subscribedLists": [

 "@TwitterAPI/meetup-20100301",

 "@TwitterAPI/team"

],

 "friendsEntities": [

 "Ghergich \u0026 Co.",

 "Bradley"

],

 }

 {…}, // second top friend

 {…}, // third top friend

 {…}, // fourth top friend

 D3.3: Technology Bricks V2|Public

Page 30 of 46

©Copyright ATC and other members of the CPN Consortium 2017

 {…} // fifth top friend

 }

The module’s API is described on a relevant Swagger documentation.

3.5.5 Test scenarios

Testing is focused on the Twitter rate limit cases. In that case the response contains an error code (0)

and an explanation message:

{

 "cpnUserId": "5b8fe613e7cffb000a11bafa",

 "profile": {

 "status": {

 "code": 0,

 "message": "Unable to compute social profile due to Twitter exception .."

 }

}

3.5.6 Installation and administration guidelines

The module uses a Tomcat server to deploy the application and implement the REST API’s. No results

are stored in a database. Therefore the administration tasks are limited to that of the embedded Tomcat.

The module is deployed as Docker container into the CPN platform and exposes its own APIs through

the API gateway. Internal port 8070 is exposed and accessible to other components.

 D3.3: Technology Bricks V2|Public

Page 31 of 46

©Copyright ATC and other members of the CPN Consortium 2017

4 UPDATES ON THE AVAILABLE BRICKS

This section describes the updates on the technology bricks that were delivered, as part of the 1st

prototype of the CPN platform.

4.1.1 PRODUCER’S APP – V2

The second version of the Producer’s app, as well as including some minor fix respect on the first

version, principally offer the new web dashboard for producers.

The Producer’s App dashboard allows to editors to improve their news production exploiting a series of

analytics and functionalities. In particular, the dashboard collects the data from the CPN platform and

provides these data in aggregated form through a web UI, proposing effective tools of data visualization.

Below a screen of the web dashboard:

Figure 2: Producer's App – Web dashboard Articles analytics section

4.1.2 Role

In the context of the CPN project, the second version of the producer’s app addresses the following user

requirements:

 PS1.1 - The system should show the access to items through users by numbers (who, when, how

long)

 PS1.3 - The system should show which topics were most interesting to users

 PS2.4 - The system should allow producers to export the record of their publications through

standardized and interoperable formats

 PS2.5 - The system should allow for an easy contribution of content from different publishers

through standardised interfaces

 PS2.7 - The system should allow editors to easily add missing attributes to articles manually

 D3.3: Technology Bricks V2|Public

Page 32 of 46

©Copyright ATC and other members of the CPN Consortium 2017

4.1.3 Internal architecture

The second version of producer’s app consists of four Docker containers. In addition of the previous

two containers, now including:

 One Docker container for dashboard server-side, based on Node.js and Express.js that

expose business logic and REST APIs for both the client application and CPN platform

 One Docker container for dashboard client-side, based on Vue.js framework. It is the Web

dashboard UI

The dashboard server container exploit the database (MongoDB) already included on the producer’s

app first release.

4.1.4 API

The second version of Producer’s app exposes a series of new APIs trough the Dashboard server

container. These APIs are divided into two groups:

 APIs for client application (Dashboard Web App)

 APIs for CPN platform

The first group of APIs is only accessible from the dashboard client and it is not accessible to other

CPN components neither exposed through the CPN API Gateway. This group of APIs includes:

 Authentication/Authorization APIs

 Data Aggregation and Analytics APIs for Data Visualisation

The second group of APIs is made available to other CPN modules and exposed through the CPN

API gateway. In particular, these APIs offer an access to anonymized statistics data, as for example

article visualisations and readings, as well as the list of articles enriched with analytics.

These APIS are documented with OpenAPI specification7 (Swagger v2.0 and are testable via CPN

API gateway interface.

4.1.5 Test scenarios

The Producer’s app collects in background all the data becoming from the CPN platform, from both

Apache Kafka and the Orchestrator, related to user behaviour respect on the articles.

An editor access to Web Dashboard UI with its credentials and can view all the analytics related to

its contents. It selects an article from the list, then chooses a date range and views a series of charts

that allows him to evaluate the performance of the article. It navigates to another section of the

dashboard and visualise the performances of the recommender system, analysing statistics on the

articles suggested by the recommender.

4.1.6 Installation and administration guidelines

The module consists in four docker containers. A docker-compose.yml is provided to build and push

the service on CPN private registry.

7 https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

 D3.3: Technology Bricks V2|Public

Page 33 of 46

©Copyright ATC and other members of the CPN Consortium 2017

The internal port are:

 Producer’s app -> 8080

 Dashboard server -> 8081

 Dashboard client -> 3001

 MongoDB -> 27017

The containers stack needs Apache Kafka and Orchestrator integration, in order to collect data from

the CPN platform. Below a graph, that represents all the stack dependencies (internal and external):

Figure 3: Producer's app stack dependencies

4.1.7 READER’S APP – V2

Notifications: The Recommender can send notifications to the Reader’s App to display information or

request direct feedback. This is achieved with the use of Firebase messaging and is supported also on

the mobile application. The Recommender only needs to specify (to a respective web service) the

recipient, the message type and the actual message.

Figure 4: Notification message (when the browser has the user's focus)

If the Reader’s app application is not open or has not the browser focus, a notification message is

presented on the bottom right corner of the browser. This happens only if the user has allowed

notifications from the CPN domain.

 D3.3: Technology Bricks V2|Public

Page 34 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Figure 5: Browser notification message

The notification message can contain a button/ link or an input form to request user feedback. It is up to

the Recommender to decide when to use this functionality.

Topics declarations: The user can personalize CPN’s recommendation by defining a list of keywords

(“topics”) that interest him during a specific time period. The topics are a list of phrases and the duration

options are “1 hour”, “24 hours”, “1 week”, “Always”. Similar, he can define a list of “topics” that he

is not interested in. This setting is enabled on the “Personalized” tab and is currently not used by the

Recommender (e.g. the values are not propagated to the CPN API Gateway).

Figure 6: Defined and exclude topics

News configuration: The user has the ability to disable the Personalization algorithm via the “News

configuration” setting. He can also select the preferred time frames to consume content. Upon timeframe

start, he will receive a respective notification message.

Figure 7: News configuration

User activity: The user activity time frames are being recorded and displayed to the user for the last 30

days. The time frames with activity are indicated and the respective actions are being displayed in a

table view.

 D3.3: Technology Bricks V2|Public

Page 35 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Figure 8: User Activity

Social media connection (Twitter) and permissions: The recommendation can be improved by either

filling a Twitter user name during the registration or by setting it on the user profile page. The Twitter

analytics module (TruthNest) will examine the user’s networks posts and send the result to the

recommender.

Figure 9: Registration fields

The permissions (location usage, preferences and temporal usage information) are propagated to the

Personal Data Receipts module.

 D3.3: Technology Bricks V2|Public

Page 36 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Figure 10: Edit user profile settings

Justification of recommendation: Reader’s app is able to show information (provided directly by the

Recommender) explaining why a specific article has been proposed to the user. Currently a description

and a score field value are being shown.

 D3.3: Technology Bricks V2|Public

Page 37 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Figure 11: Justification fields

 D3.3: Technology Bricks V2|Public

Page 38 of 46

©Copyright ATC and other members of the CPN Consortium 2017

5. FOLLOW-UP OF RECOMMENDATIONS AND COMMENTS

FROM PREVIOUS REVIEW(S)

Comments on D3.1 Initial design and APIs of technology Bricks

- It is not clear how the conceptual architecture of section 3 uses D2.1. Please explain.

The CPN Reference architecture document (D2.1) introduces the main actors to whom the platform is

addressed: end users and media professionals. It justifies the selection of microservices architecture and

describes patterns associated with it. At a logical layer, the platform services can be conceptually divided

into three layers: content layer, mapping layer and user layer.

The conceptual architecture of section 3 of D3.1 document describes the content creation, readers and

user profile workflow. These workflows are associated respectively with the content, mapping and user

logical layers. The content layer is composed of the content procurement and knowledge extraction

types of services. The content creation workflow covers both activities. Similar, the user layer offers

specific services to deal with the user data itself, typically described by the user profile workflow. The

mapping layer (maps content onto targeted users) is partially described by the user profile and reader’s

workflows.

- Please mention which technical requirements (from D1.4) are taken into account.

The conceptual architecture has been created taking into account the D2.1: Reference Architecture as

well as the requirements derived from WP1 tasks. The technical requirements that were considered are

mentioned on the 3.1.2 and 3.2.2 sections of the D1.4 - exceptions are the technical requirements related

to the user requirements under question (table 4).

- Please mention which modules are you going to develop 1) from scratch, 2)customise/adapt, 3)just

use. What is the TRL level of these modules? (Please include the table as it was presented during

the review). There are some basic conceptual issues.

All the modules have been adapted to the CPN needs. The TRL level of each module is presented in the

following table:

Semantic Lifting TRL 2 → 5

Relation Extraction TRL 4 → 5

Topic Extractor TRL 7 → 8

Uplifting/Depressing Article Classifier TRL 1 → 4

Frame Based Slot-Filling System TRL 1 → 4

Recommender AB-Testing TRL 6 → 7

User Modelling TRL 4 → 5

Reader's App TRL 4 → 5

Personal Data Receipts TRL 4 → 5

Producer's App. TRL 4 → 5

Distribution Framework TRL 4 → 5

Twitter Analytics TRL 4 → 5

Recommender TRL 4 → 5

- Page 14: UR-AF 1.5 (avoid filter bubbles): “the system should allow users to choose favourite

sources” But that is exactly what filter bubble is! Has the Consortium renounced its goal of avoiding

filter bubbles (Note: of course users should be able to choose favourite sources but that cannot be

put forward as the solution to filter bubbles).

We've gone different ways to address this requirement:

 D3.3: Technology Bricks V2|Public

Page 39 of 46

©Copyright ATC and other members of the CPN Consortium 2017

 This particular requirement was not followed-up on, since we don't have a multi-source app, but

rather one to a few sources only. (With VRT and DW being public broadcasters that are per

setup "un-biased").

 We've taken a closer look into the filter bubble definition and issue and we decided that we can

best address it in CPN by making it clear to the user where their bias is in terms of news

consumption. This is the developing feature with the topic-overview that's not yet implemented.

 In the recommendation mix there is a random suggestion part (controlled dithering) that offers

you articles outside your spectrum, plus you might get recommendations from the newsroom as

well, helping you to read beyond your own interest bubble

- Page 15: UR-UP2 (Making use of connections user already has through social media) – it is not

clear this doesn’t also make filter bubbles worse.

This requirement wasn't addressed further as we decided against it. We don't use user’s connections

from social media.

- Page 16: UR-AF2 (Avoiding FOMO: how to ensure people think they know everything there is to

know). It is not clear how what the recommend will not increase FOMO.

By offering the users a view of the recommendation stream next to the most popular and the most recent

tab, the user can always check whether he/she has not seen some news. In addition the system is offering

the user control over how much time they want to spend reading the news and when - not limiting it to

those specific times, but helping them to overcome the feeling, by regulating themselves. This is based

on the assumption that an endless stream makes people think there is always more to read, without

finding an end. By building up trust in the algorithm, we allow people to move more and more to the

point where they can accept that the algorithm has shown them everything they need/want to know at

that point in time and with the amount of time they have available at that point. A message "you're all

caught up" at the end of the current list also helps to give people that feeling.

Comments on D3.2 Technology Bricks v1

- As in previous document, the idea of being able to choose favourite sources as a method to avoid

filter bubbles is given (AF1.5).

Please see above -> UR-AF 1.5

- Page 17: User Modelling – English, Dutch, Greek – will other languages be incorporated during the

project? How onerous will it be to add others?

A detailed table regarding the corporation of additional languages, is included in Section 5.1 of this

deliverable.

Comments on D1.4 Technical Requirements

- Bursting the filter bubble – most of these requirements don’t seem to come from the previous

documents. How were they derived?

- “Highlight differences between perspectives” – laudable but difficult.

- Content formats – will there be automated versioning?

- Transparency about recommendations – laudable but difficult.

- Many of the user requirements from D1.2 are not dealt with.

The D1.4: Technical Requirements (platform and service requirements) provides the implementation

aspects for the delivery of the CPN platform taking into account the full range of requirements for such

 D3.3: Technology Bricks V2|Public

Page 40 of 46

©Copyright ATC and other members of the CPN Consortium 2017

service. The design of the CPN platform is driven by the usage scenarios and user requirements defined

earlier in WP1 (D1.1 User requirements). However, a list of requirements has been identified and

reported in D3.1 with the aim to be further analysed by the Consortium.

Regarding the “Bursting the filter bubbles” requirement (UR-AF1) the vision has been changed, as the

CPN platform has been oriented as a single source provider. We address this requirement focussing

mainly on the transparency of the recommendation algorithm and by giving to the users a clear

information on what they read over a certain amount of time and by helping the user to make decisions

and to understand if they are "reading into a bubble".

The content format requirements (UR-AF3) and Production Side requirements (UR-PS1.2 and UR-

PS2.6) are not easily addressable with the available technology bricks, but we foresee to take into

account them by exploiting the hackathon results - additional components will be integrated into the

CPN platform. More details on this will be available at the end of the hackathon in June 2019 and

reported in the D2.4 (v3).

- (AF 1.2, AF1.4) – This is understandable and expected but a list of requirements that have been put

off or won’t be dealt with need to be provided.

The following table provides the list of requirements that will not be implemented, as decided by the

Consortium. A short explanation leading to this decision is also provided.

Table 4: List of requirements under question

Requirement

category

Requirement

ID

Requirement

description
Explanation

UR-UP 1:

Interests

(Categories,

Entities, Values):

What topics is the

user interested in?

UR-UP 1.1

The system must allow

the user to manually

choose their interests that

later define the

personalisation

It was decided that the cold start

problem will be resolved by

quickly learning form the first

user actions

UR- UP1.7

The system should allow

users to assign and

change preferences (1-5)

to categories themselves

This is incompatible with the

requirements of automatic user

profiling and the fact that the

categories are automatically

defined in a dynamic fashion

UR-AF 1:

Bursting the Filter

Bubble: How can

CPN avoid filter

bubbles and echo

chambers?

UR-AF 1.2

The system should

highlight differences

between the perspectives

of different sources on a

similar topic

Stance detection was abandoned

as its benefits were deemed

questionable in content

originating in mainstream sources

UR-AF 1.4

The system should make

it easy for the user to see

a bias of a content item or

source

Stance detection had been

abandoned as its benefits were

deemed questionable in content

originating in mainstream sources

UR- AF1.5

The system should allow

users to choose favourite

sources

This was deemed unnecessary as

every user is attached to a single

source

UR-AF 3:

Content/Format:

In which way do

we have to

prepare content

for the user?

UR-AF 3.1

The system should offer

content items in small,

easy to consume and

logical packages,

allowing the user to

consume them bit by bit

Was implemented by tracking the

percentage of the article that was

displayed by the reader

 D3.3: Technology Bricks V2|Public

Page 41 of 46

©Copyright ATC and other members of the CPN Consortium 2017

Requirement

category

Requirement

ID

Requirement

description
Explanation

UR-AF 3.3

The system should allow

users to choose whether

they prefer an overview

or all content at once

It was deemed unnecessary as a

short summary is usually

contained in the first paragraph of

a news item

UR-AF 3.6

The system should be

able to put global news in

a local relevance context

for users

It was deemed impossible to

satisfy as there was no relevant

brick or technology expertise on

the consortium to tackle this

adequately

UR- AF3.8

The system should allow

users to filter content by

language

This was deemed unnecessary as

content in CPN is in particular

languages for particular users

UR-AF 3.9

The system should allow

users to filter content by

complexity within a

language

It was deemed impossible to

satisfy as there was no relevant

brick or technology expertise on

the consortium to tackle this

adequately

UR-PS 1:

Detailed

Analytics: Giving

Newsrooms a

more detailed

feedback on their

audience

UR-PS 1.2

The system should show

which parts (paragraphs,

entities) of an item were

most interesting to users

This was dealt with by monitoring

what percentage of the article was

consumed

UR-PS 2:

Integration: How

should CPN be

connected to the

production side?

UR-PS 2.6

The system should give

feedback on what

attributes are best used on

content to improve the

personalisation

performance

A section in the dashboard

monitors performance of articles

but it was found impossible to

link this to specific attributes

UR-AF4:

Sources: Where

does the

necessary content

come from?

UR- AF4.2

The system should allow

for additional content

sources, outside the

consortium

In the decided implementation the

platform allows a single source

for every user, so this is not

possible

 D3.3: Technology Bricks V2|Public

Page 42 of 46

©Copyright ATC and other members of the CPN Consortium 2017

5.1 LANGUAGE DEPENDENCY IN CPN BRICKS

CPN Bricks Partner

Is it

language

dependent

If yes, which

languages will it

cover by the end of

the project

If yes, how much effort approximately is

needed to add a new language
Comments/Notes

Personal Data

Receipts
DCAT Yes

English, Greek, French,

Dutch and German can

be covered, by the end

of the project

- -

Distribution

Framework
DCAT Yes

English will be used by

the end of the project

An additional language can be added in a period of

2 weeks per language
-

Producer’s app ENG No - -

The only thing that could require a

translation could be the web

interface that will be prepared for

pilot 2 - this will be later discussed

and agreed among the Consortium.

Relation

extraction

component

IMEC Yes English

2 person months, needed for

- Building a large corpus of annotated sentences

with the target relations. Around 30 full days of

annotations by native speakers

- Training the model and potential feature

annotations (using the ’semantic label

propagation paradigm'), which we believe

would require a similar workload as for the

annotations (1 PM)

 D3.3: Technology Bricks V2|Public

Page 43 of 46

©Copyright ATC and other members of the CPN Consortium 2017

CPN Bricks Partner

Is it

language

dependent

If yes, which

languages will it

cover by the end of

the project

If yes, how much effort approximately is

needed to add a new language
Comments/Notes

Uplifting vs

depressing

annotations

IMEC Yes English

It is too early to provide concrete effort estimates

for other languages.

-

Frame-based text

enrichment
IMEC Yes English

It is too early to provide concrete effort estimates

for other languages.

-

Topic Extractor LIVETECH Yes
English, German, Dutch

and Greek

NLP world is highly dishomogeneous as it depends

strongly on available linguistic resources and

language characteristics. Among the characteristics

that must be analysed in order to estimate the effort

needed to include a new language we can cite:

 Morpho-syntactic complexity: some languages

are naturally richer in inflections than others

(e.g. different word endings for linguistic cases

vs plural/singular). This can make the topics

clustering and terminological candidates’

selection simpler and more effective in some

languages and more difficult on others.

 different alphabets: some content needs to be

transliterated to be processed by some tools

(e.g. translating cyrillic to latin alphabet)

 Word segmentation: in some languages the

boundaries between words are explicit,

typically marked by a blank, while in others

segmentation is more problematic. Languages

which do not have a trivial word segmentation

process include Chinese, Japanese, where

sentences but not words are delimited, Thai and

Other languages that could be easily

integrated are: French, Spanish,

Romanian, Croatian, and Serbian.

Depending also on some business

opportunities we will evaluate the

possibility of including some of

these languages to the capabilities of

the module.

 D3.3: Technology Bricks V2|Public

Page 44 of 46

©Copyright ATC and other members of the CPN Consortium 2017

CPN Bricks Partner

Is it

language

dependent

If yes, which

languages will it

cover by the end of

the project

If yes, how much effort approximately is

needed to add a new language
Comments/Notes

Lao, where phrases and sentences but not

words are delimited, and Vietnamese, where

syllables but not words are delimited.

As a result, the effort of integrating new languages

in the module can be roughly estimated as follows:

 A minimum of 2 weeks of effort for

languages in the same family (or somehow

close) to the ones already supported by the

platform

 A maximum of 3/4 months effort for

integrating more exotic languages.

This process could, in some extreme cases, include

buying, when not freely available, linguistic

resources such as electronic dictionaries, thesauri,

linguistic corpora, etc. On average, the maximum

expected of the resources to be bought for treating a

very specific language, could be estimate in around

4000 euros.

Recommender

AB-Testing
LIVETECH No - - -

Twitter Analytics ATC Yes English

Approximately 2 – 3 person weeks per language

and the setup of named entity recognition software

for each language.

-

Reader’s App ATC No - - Only the UI is language dependent

 D3.3: Technology Bricks V2|Public

Page 45 of 46

©Copyright ATC and other members of the CPN Consortium 2017

6. CONCLUSIONS

This Deliverable reports on the implementation of the technological infrastructure of the 2nd prototype

of the CPN platform. Subsequent versions of the platform components are expected to provide updated

versions of the currently available components, APIs, and services, along with possible new

components, APIs, and services, in order to adapt to possible new requirements and functionality needed

by the constantly evolving CPN platform.

 D3.3: Technology Bricks V2|Public

Page 46 of 46

©Copyright ATC and other members of the CPN Consortium 2017

7. REFERENCES

[1] CPN: D1.1 User Requirements Model

[2] CPN: D2.1 CPN Reference Architecture

[3] CPN: D3.1 Initial Design & APIs of Technology Bricks

[4] Kleinbaum, David G., et al. Logistic regression. New York: Springer-Verlag, 2002.

[5] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995):

273-297.

[6] Robertson, Stephen. "Understanding inverse document frequency: on theoretical arguments for

IDF." Journal of documentation 60.5 (2004): 503-520.

