
Projectcpn.eu

Grant Agreement No.: 761488

D3.2: Technology Bricks V1

This deliverable provides the first version of the technology bricks which have been planned for the first

prototype of the CPN platform. The prioritization of the features to implement for the first prototype

have been carried out in such a way as to respect the expected timing, but at the same time release

meaningful functionalities, that will be improved and extended in the next prototypes.

 D3.2: Technology Bricks V1|Public

Page 2 of 30

©Copyright ATC and other members of the CPN Consortium 2017

Work package WP 3

Task T3.1-T3.3

Due date 30/6/2018

Submission date 30/6/2018

Deliverable lead ATC

Version 1.0

Authors Nikos Sarris, Marina Klitsi, Efstratios Tzoannos, Stamatis Rapanakis (ATC)

Reviewers Fulvio D'Antonio (LiveTech)

Keywords Technology Bricks, APIs, prototype 1

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 11/5/2018 Table of Contents Nikos Sarris, Marina Klitsi (ATC)

V0.2 25/6/2018 1st completed version

including partners’

contribution

Nikos Sarris, Stamatis Rapanakis, Marina Klitsi (ATC), Michele Nati

(DIGICAT), Bosco Ferdinando (ENG), Fulvio D'Antonio (LiveTech)

V0.3 27/6/2018 Review of the report Fulvio D'Antonio (LiveTech)

V1.0 28/6/2018 Final version of the

reportt

Nikos Sarris, Stamatis Rapanakis, Marina Klitsi (ATC)

 D3.2: Technology Bricks V1|Public

Page 3 of 30

©Copyright ATC and other members of the CPN Consortium 2017

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any use that

may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to CPN project and Commission Services

 D3.2: Technology Bricks V1|Public

Page 4 of 30

©Copyright ATC and other members of the CPN Consortium 2017

EXECUTIVE SUMMARY

This deliverable reports on the work performed in WP3 which addresses the development of the required

technology bricks for the CPN Platform. Taking into account the user requirements, as described in

deliverable D1.1 “User Requirements Model”, this report presents the components and services

implemented for the first prototype of the platform.

The components & services which are being presented in this deliverable are classified in three main

categories (Content, Users, Mapping), based on their functionality as defined by the project’s

requirements. For each technology brick, a brief description of its functionality is provided, along with

API, test scenarios and installation guidelines.

The first prototype of the CPN platform includes the following 6 technology bricks, as described in this

deliverable:

Layers Name of 'technology brick'

Content Technology Bricks Relation Extraction

Users Technology Bricks

User Modelling

Reader's App

Personal Data Receipts

Mapping Technology Bricks
Producer's App

Recommender

 D3.2: Technology Bricks V1|Public

Page 5 of 30

©Copyright ATC and other members of the CPN Consortium 2017

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 4

TABLE OF CONTENTS .. 5

LIST OF TABLES .. 7

ABBREVIATIONS ... 8

1 INTRODUCTION.. 9

2 SUMMARY OF REQUIREMENTS FOR PROTOTYPE 1 .. 10

3 MODULES DESCRIPTION... 14

3.1 relation extraction .. 14

3.1.1 Overview .. 14

3.1.2 Role .. 14

3.1.3 Internal architecture .. 14

3.1.4 API .. 14

3.1.5 Test scenarios .. 16

3.1.6 Installation and administration guidelines .. 16

3.2 User Modelling .. 16

3.2.1 Overview .. 16

3.2.2 Role .. 16

3.2.3 Internal architecture .. 17

3.2.4 API .. 17

3.2.5 Test scenarios .. 19

3.2.6 Installation and administration guidelines .. 19

3.3 Reader’s app .. 19

3.3.1 Overview .. 19

3.3.2 Role .. 19

3.3.3 Internal architecture .. 20

3.3.4 API .. 20

3.3.5 Test scenarios .. 20

3.3.6 Installation and administration guidelines .. 21

3.4 Personal Data Receipts .. 21

3.4.1 Overview .. 21

3.4.2 Role .. 22

3.4.3 Internal architecture .. 23

3.4.4 API .. 23

3.4.5 Test scenarios .. 24

 D3.2: Technology Bricks V1|Public

Page 6 of 30

©Copyright ATC and other members of the CPN Consortium 2017

3.4.6 Installation and administration guidelines .. 25

3.5 Producer’s App .. 25

3.5.1 Overview .. 25

3.5.2 Role .. 25

3.5.3 Internal architecture .. 25

3.5.4 API .. 26

3.5.5 Test scenarios .. 26

3.5.6 Installation and administration guidelines .. 26

3.6 Recommender .. 26

3.6.1 Overview .. 26

3.6.2 Role .. 26

3.6.3 Internal architecture .. 27

3.6.4 API .. 27

3.6.5 Test scenarios .. 28

3.6.6 Installation and administration guidelines .. 28

4 CONCLUSIONS .. 29

5 REFERENCES ... 30

 D3.2: Technology Bricks V1|Public

Page 7 of 30

©Copyright ATC and other members of the CPN Consortium 2017

LIST OF TABLES

TABLE 1: FIRST PROTOTYPE REQUIREMENTS ... 13

TABLE 2: FIRST PROTOTYPE TECHNOLOGY BRICKS .. 13

 D3.2: Technology Bricks V1|Public

Page 8 of 30

©Copyright ATC and other members of the CPN Consortium 2017

ABBREVIATIONS

API Application Programming Interface

PDR Personal Data Receipts

App Application

 D3.2: Technology Bricks V1|Public

Page 9 of 30

©Copyright ATC and other members of the CPN Consortium 2017

1 INTRODUCTION

This Deliverable contains the basic description of the technological infrastructure of the 1st prototype of

the CPN platform which is composed by what we call 'technology bricks'. The components, APIs, and

services included in the first version of the platform customization infrastructure and components, and

described in this deliverable have been designed and developed according to the user requirements, as

described in deliverable D1.1 “User Requirements Model”.

The CPN project foresees three releases of the 'technology bricks' in order to be available for the related

pilots. Each release includes specific functionalities, chosen after a process of evaluation and

prioritization of the user requirements. Starting from the reference architecture document, the first

versions of the technology bricks have been implemented and reported in this document. This version

of the bricks is the first one of a cycle of three iterations and will offer a series of features in order to

test the related bricks in a pilot environment.

The main goal of this document is to present the technology bricks that are foreseen at this point of the

project necessary to satisfy the user requirements expected for the first pilot iteration. For each

technology brick, a brief description of its functionality is provided, along with API, test scenarios and

installation guidelines.

The structure of the deliverable is organized as follows: Section 2 provides an overview of the

requirements for the 1st prototype. Section 3 describes the first versions of the CPN technology bricks

infrastructure. Finally, section 4 concludes this document.

 D3.2: Technology Bricks V1|Public

Page 10 of 30

©Copyright ATC and other members of the CPN Consortium 2017

2 SUMMARY OF REQUIREMENTS FOR PROTOTYPE 1

We enlist here the requirements that we have satisfied in the first prototype along with the list of the

modules that have been necessary for satisfying these requirements.

PROTOTYPE 1

Requirement

category
Requirement ID Relevant Task Requirement description

UR-UP1:

Interests

(Categories,

Entities,

Values): What

topics is the

user interested

in?

UR-UP 1.2

API Gateway must expose API to

collect user actions

User Modelling must create/refine

user interests

Reader's App must track user

actions

The system should

create/refine interests

based on the user’s

consumption habits

UR-UP 1.4

Recommender - Refine user's

interests through user interaction

Reader's App - Support

interaction to refine user's

interests (talkback).

Reader's app must refine user's

interest through user interaction.

The system should

refine the user’s

interests through

frequent interaction with

the user (talkback)

UR-UP 1.6

User Modelling must assign

preferences to categories after

collecting user actions

The system should

assign preferences (1-5)

to categories based on

the users behaviour

UR-UP 1.7

Recommender must allow users to

assign and change preferences (1-

5) to categories themselves.

Reader's app must allow users to

assign and change preferences (1-

5) to categories themselves.

The system should

allow users to assign

and change preferences

(1-5) to categories

themselves

UR-UP 1.8

Recommender should expose API

to enable/ disable personalisation

algorithm.

Reader's App should contain UI

elements to enable/ disable

personalisation algorithm

The system must allow

users to completely turn

off the personalisation

algorithm and receive

content as is and vice

versa

UR-UP2:

Network:

Making use of

connections the

user already has

through social

media.

UR-UP 2.7

Reader's app should allow users to

share content to social networks.

The system should

allow users to share

content from the CPN

system to social

networks

UR-UP3: Time

& Length:
UR-UP 3.1

Reader's app must allow the user

to choose a preferred time frame

The system must allow

the user to choose a

 D3.2: Technology Bricks V1|Public

Page 11 of 30

©Copyright ATC and other members of the CPN Consortium 2017

Requirement

category
Requirement ID Relevant Task Requirement description

When does the

user prefer to

consume

content and for

how long?

or frames to consume content, to

postpone it and to ignore it.

Recommender must allow the

user to choose a preferred time

frame or frames to consume

content, to postpone it and to

ignore it.

preferred time frame or

frames to consume

content

UR-UP 3.2
User Modelling must track user

consumption habits.

The system should

create/refine time

frames based on the

user’s consumption

habits

UR-UP 3.3

Recommender must refine the

user’s time frames through

frequent interaction with the user

(talkback)

Reader's App - Support

interaction to refine the user’s

time frames (talkback).

Reader's app should support

refining the user’s time frames

through frequent interaction with

the user (talkback)

The system should

refine the user’s time

frames through frequent

interaction with the user

(talkback)

UR-UP 3.5

Reader's app must allow the user

to choose a preferred time frame

or frames to consume content, to

postpone it and to ignore it.

Recommender must allow the

user to choose a preferred time

frame or frames to consume

content, to postpone it and to

ignore it.

The system must allow

the user to postpone a

time frame for a chosen

amount of time.

UR-UP 3.6

Reader's app must allow the user

to choose a preferred time frame

or frames to consume content, to

postpone it and to ignore it.

Recommender must allow the

user to choose a preferred time

frame or frames to consume

content, to postpone it and to

ignore it.

The system must allow

the user to ignore a time

frame completely

UR-UP5:

Location &

Surroundings:

Where is the

user and what's

UR-UP 5.2

Recommender must be able to set

a home/main interest location.

Reader's App support setting a

home/main interest location.

The system should

allow the user to set a

home/main interest

location

 D3.2: Technology Bricks V1|Public

Page 12 of 30

©Copyright ATC and other members of the CPN Consortium 2017

Requirement

category
Requirement ID Relevant Task Requirement description

going on around

him/her?

UR-UP9: User

Profile

Management:

Giving the user

transparency

and control over

their data

UR-UP 9.1

API Gateway must expose API to

provide user data to CPN modules

Reader's App should provide user

data information and explanation

Personal Data Receipts should

provide an API to create/ edit/

retrieve a user's record

The system must

provide transparent,

simple and easy-to-

understand information

on what user data are

collected, for what

purpose and how they

are stored

UR-UP 9.2

API Gateway must expose API to

provide user data to CPN modules

Reader's App must offer

management of personal user's

data.

User Modelling should provide

user fields to Personal Data

Receipts

Personal Data Receipts must

define the records fields

The system should

require informed and

explicit consent for

processing of personal

user data, beyond those

required for the

provisioning of the

agreed service

UR-AF1:

Bursting the

Filter Bubble:

How can CPN

avoid filter

bubbles and

echo chambers?

UR-AF 1.5

Reader's app should allow users to

choose favourite sources.

Recommender app should allow

users to choose favourite sources.

The system should

allow users to choose

favourite sources

UR-AF2:

Avoiding

FOMO: How to

ensure people

think they know

everything there

is to know

UR-AF 2.4

Recommender must show users

only a limited number of items at

once

The system should show

users only a limited

number of items at once

UR-AF 2.5

Recommender must offer more

content once all proposed articles

have been consumed.

Once all articles

proposed have been

consumed, the system

should only offer more

content upon request by

the users

UR-AF3:

Content/Format:

In which way

do we have to

prepare content

for the user?

UR-AF 3.4

Recommender should offer both

news content and entertainment,

locally and globally relevant

content.

The system should be

able to offer both news

content and

entertainment

UR-AF 3.5

Recommender should offer both

news content and entertainment,

locally and globally relevant

content.

The system should be

able to offer both locally

and globally relevant

content

UR-AF 3.8

Reader's app should allow users to

filter content by language.

The system should

allow users to filter

content by language

 D3.2: Technology Bricks V1|Public

Page 13 of 30

©Copyright ATC and other members of the CPN Consortium 2017

Requirement

category
Requirement ID Relevant Task Requirement description

Recommender must allow users to

filter content by language.

UR-AF4:

Sources: Where

does the

necessary

content come

from?

UR-AF 4.1

Recommender must elaborate

contents provided by Producer's

App

The system should be

able to personalise news

from/for the CPN media

partners (VRT, DIAS,

DW)

UR-AF 4.2

Reader's app must allow for

additional content sources, outside

the consortium.

Producer's App must allow for

additional content sources, outside

the consortium

The system should

allow for additional

content sources, outside

the consortium

UR-AF7: User

Feedback:

Asking users to

help improve

the system

UR-AF 7.2

User Modelling should take into

consideration user feedback.

Reader's App support sending

feedback, add labels next to UI

elements

The system should

include guided feedback

for specific elements of

the system, allowing

users to (help) improve

it
Table 1: First prototype requirements

Foreseen necessary technology bricks

The technology bricks necessary for the 1st prototype are illustrated in the shaded cells of the table

below.

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Relation Extraction

Topic Extractor

Uplifting/Depressing Article Classifier

Frame Based Slot-Filling System

Sentiment

Users Technology Bricks

User Modelling

Reader's App - TRULY MEDIA

Personal Data Receipts

Mapping Technology Bricks

Producer's App - CUTE4LE

Reward Framework

Twitter Analytics - TRUTHNEST

Recommender
Table 2: First prototype technology bricks

 D3.2: Technology Bricks V1|Public

Page 14 of 30

©Copyright ATC and other members of the CPN Consortium 2017

3 MODULES DESCRIPTION

This section describes the modules needed to implement the 1st prototype of the CPN platform.

3.1 RELATION EXTRACTION

3.1.1 Overview

The relation extraction module extracts entities from raw text and detects whether a predefined set of

relations occurs between them. Our current system is designed for relations defined in the TAC KBP

Shared task schema http://surdeanu.info/kbp2014/TAC_KBP_2014_Slot_Descriptions.pdf. We intend

to allow for extension of this set of relations, depending on requirements of the recommendation system.

The module will process English text provided by the CUTE module. Given that named entities are

essential for the slot filling component, next to relations, output from the named entity extractor will be

included as additional metadata.

3.1.2 Role

Output from the relation extraction module will provide articles with additional metadata to be used by

the recommender system to improve recommendations.

Articles are retrieved from CUTE module.

Articles with additional metadata on relations and entities are sent forward to the recommender module

3.1.3 Internal architecture

The module is a Python wrapper around the Stanford CoreNLP toolkit for java which provides a broad

set of language technology tools.

The Python scripts post-process output from a CoreNLP server and will allow for detection of additional

relations (not included in the the TAC KBP schema). This functionality relies on python packages such

as Scikit-Learn, Pytorch,

3.1.4 API

The API of this module will provide a single operation, which is relation extraction and named entity

recognition. Currently the module expects a single article for each call to the module and returns

relations and entities detected at the sentence level.

Example of expected Input:

{

_id : String, // Internal Id

originId: String, // Original Id from source

origin: String, // Source

url: String //original item url

category: String, // Category of article

http://surdeanu.info/kbp2014/TAC_KBP_2014_Slot_Descriptions.pdf

 D3.2: Technology Bricks V1|Public

Page 15 of 30

©Copyright ATC and other members of the CPN Consortium 2017

title : String,

text : String,

language : String,

author : String,

date : Date, // date in Date format

dateStr : String, // date in String format

timestamp : Number, // date in timestamp format

location : { //location in geoJson format

type: Object,

index: '2dsphere',

sparse: true },

tags : [String] //list of tags

}

Example of output:

{

originId : String, // Original Id from source

origin : String, // Source

url : String //original item url

title : String,

language : String,

author : String,

date : Date, // date in Date format

dateStr : String, // date in String format

timestamp : Number, // date in timestamp format

sentences: { [{

index: int,

entitymentions: [{

CharacterOffsetBegin: int,

CharacterOffsetEnd: int,

DocTokenBegin: int,

docTokenEnd: int,

text: text // Surfaceform of Entity, eg. Barrack Obama

ner: text //Nertype, eg. PERSON

tokenBegin: int,

tokenEnd: int

}

],

kbp: [{

Object: string, // Object Entity, eg. Barrack Obama

objectSpan: [int,int],

 D3.2: Technology Bricks V1|Public

Page 16 of 30

©Copyright ATC and other members of the CPN Consortium 2017

relation: string, // Object Entity, eg. per:title

relationSpan: int,

subject: text // Object Entity, eg. President

subjectSpan: [int,int]

}]

}] }

}

3.1.5 Test scenarios

During development articles were sampled from the API provided by Deutsche Welle and processed.

Depending on the functionality (the addition of extra relations vs. the standard KBP schema mentioned

earlier) the module has a latency in the order of 0.1 second per article. In subsequent tests we have

processed a batch of articles from the CUTE module.

3.1.6 Installation and administration guidelines

The module can be easily deployed as a docker container using standard container orchestration

technologies.

3.2 USER MODELLING

3.2.1 Overview

The user modelling module is responsible for creating, maintaining and building a profile of the users

of the CPN Reader’s App. In addition it is also responsible for analysing the articles collected by the

Cute4LE module by performing a “semantic enrichment” of the text collected; the multilingual text is

extracted in order to find relevant entities (such as person names, organizations names, locations etc.)

and extracting keywords.

3.2.2 Role

This module constitutes one of the most important elaboration points in the CPN processing pipeline as

it lays down the basis for the recommendation module to work. The recommendation process can be

seen as a matching process between a list of users and a catalogue of items. Users and items can be

described ad vectors of features. The module is responsible for creating, maintaining and continuously

updating such vectors of features associated to users and news items.

In this first release the features used to represent Users are the following:

 Informational features: name, email contact

 Socio-demographic features: age range

 Behavioural features: news reading history, like/dislike history

 Topics of Interests: the ranked of list of topics for which the user has implicitly or explicitly

expressed interest for over the time

 D3.2: Technology Bricks V1|Public

Page 17 of 30

©Copyright ATC and other members of the CPN Consortium 2017

These features constitute the “User profile”. The user profile is built partly on the information provided

explicitly by the user himself and partly on the information provided by the user in an implicit way (e.g.

long time spent reading an article is considered an implicit manifestation of interest for that article and

the related topics)

The features used to represent “News Items” are the following:

 Basic article metadata: URL, date, tags (if provided by the original source)…

 Automatically extracted metadata: named entities (persons, locations, organizations cited in

the text), unsupervised list of keywords, relations between entities in the text.

The module is able to extract metadata from three different source languages, namely english, dutch and

greek.

3.2.3 Internal architecture

The module relies on the following components:

 Components for retrieving messages from a broker

They are in charge of connecting to the kafka broker end retrieve different kind of messages: news

elaboration messages (new articles to elaborate) and user events.

 NLP processing components

Elaboration pipelines able to extract meaningful information from multilingual text. The core

technologies actually used are: NLTK, Spacy, Polyglot (python libraries) and Stanford CoreNLP (java

library/server).

 Storage components

Storing the result of the elaborations and users personal data: the backends used in the storage module

are MongoDB and Apache Solr search server.

 REST API Layer

A python Flask layer of services exposing the CRUD operations for user profile management.

3.2.4 API

This module is responsible for maintaining users’ data keeping track of his/her interests, history of click

and news consumption and demographic data. This data will be mainly used by the recommender engine

in order to select the most suitable news in according to a given user profile. The data consumed by this

module will be the list of events generated by the users (posted through the broker). The kind of events

that the module will be processing are the following:

 “News”: when a news item is added to the broker it is retrieved by the module in order to tag,

analyze it, extract topics, etc.

 “Users_feedback”: every action initiated by a customer that is collected by the platform it is

collected, processed and stored in the user profile. Typical events are:

 D3.2: Technology Bricks V1|Public

Page 18 of 30

©Copyright ATC and other members of the CPN Consortium 2017

◦ User clicks

◦ Users ratings (explicit rates, thumbs up/down, etc.)

◦ User profile update (e.g. change of name, location, age, etc.)

Data produced

Schema Version 0.1:

userModellingSchema:

{

 "user_id": "String",

 "demo": {

 "gender": "String",

 "age": "Number",

 "name": "String",

 "email": "String"

 },

 "interests": [

 {

 "id": "String",

 "label": "String",

 "score": "Number",

 }

],

 "activities": [

 {

 "item_id": "String",

 "event": "String"

 }

]

}

 D3.2: Technology Bricks V1|Public

Page 19 of 30

©Copyright ATC and other members of the CPN Consortium 2017

3.2.5 Test scenarios

The module has been tested in isolation and in a full integrated way receiving text from Cute4LE module

via the Kafka broker, elaborating and storing into Mongo and SOLR search server. The pipeline is

currently active and elaborating all the test documents that are submitted on the broker.

3.2.6 Installation and administration guidelines

The User Modelling module is composed of several submodules all deployable by using docker

orchestration technologies (e.g. Cattle, Kubernets, etc.). It is easily deployable using CPN platform’s

orchestration dashboard (based on Rancher) and a docker-compose file with all the relevant settings has

been provided.

3.3 READER’S APP

3.3.1 Overview

The front end of the CPN application is provided by the Reader’s App. It is a web application that mainly

displays a news stream and offers to the user several controls to interact with the platform. Apart from

displaying the Recommender module output (as a news stream), it is used to customize the user

personalization settings, to track the user’s actions and to get feedback from the user. The Reader’s App

is the starting point of the CPN application and provides a subscription and login user interface. It

exchanges information with the other modules through an API Gateway and displays their output in a

responsive, mobile friendly user interface. Finally, it offers a feedback form to send user feedback

directly to the administrators.

3.3.2 Role

The role of the Reader’s App is to provide a web interface to the user so that he can interact with the

CPN application. The user subscribes and logins to the application by calling the respective API

Gateway services. The User Modelling module is called to create a user profile. The Recommender

module is called when the user logs in and its output (list of articles) are displayed as a “News stream”.

The Reader’s app also shows information propagated by the Personal Data Receipts module, related to

the user’s data and usage policy. The user can manage his personal data access and usage settings

through the application.

To support content personalization functionalities, Reader’s App web application contains settings

pages for the Frame Based Slot – filling system module. The user can enter his preferences and the

respective module settings are updated. Reader’s App tracks several user actions and sends them to the

user modelling module. Examples of tracked user actions include the articles read, the rating of an

article, the removal of an article from the news stream, the time spent on certain pages and others. In

this way, the Recommender module can update its output and provide personalized content. Three

streams (Personalized/ Popular/ All) are available in the Reader’s App main page. The user can also

view a collection of read/ favourite articles, as well as a collection of articles they disliked/ are not

interested in. By using the provided functionalities he will better understand the way the Recommender

is set up.

The following requirements that are addressed by this module in the 1st prototype are being considered

complete: UP1.2, UP1.4, UP1.8, UP9.1, UP9.2 and AF4.1.

 D3.2: Technology Bricks V1|Public

Page 20 of 30

©Copyright ATC and other members of the CPN Consortium 2017

3.3.3 Internal architecture

The Reader’s App module consists of a front end web application and a backend Tomcat7 application.

The backend application mainly manages the API Gateway communication (validations, error handling

etc.) and the web application usage related data. It is developed using Spring Bootstrap framework (Java)

and the data are stored in a Mongo database. The front end is based on Angular Fuse template (Angular

1.5.x) and communicates with the backend through RESTful web services.

The logical view of the modules and its main interactions with the other modules are shown in the

following diagram:

Reader's App flow and interactions

The Reader’s App backend has been developed to handle errors in a consistent and user friendly way.

For example the modules error messages are being wrapped and more comprehensive messages are

being shown to the user. A number of checks of the provided user input is being also performed (at the

backend), to ensure the modules receive valid data.

3.3.4 API

Reader’s App module does not offer an API since it is not called by another module. The interactions

with the other modules are being performed through the API Gateway. Since it consists of a front end

web application and a backend service, it implements an internal API for communication between them.

3.3.5 Test scenarios

The main test scenarios performed include the following functionalities:

 Subscribing to the platform.

 D3.2: Technology Bricks V1|Public

Page 21 of 30

©Copyright ATC and other members of the CPN Consortium 2017

 Signing in to the platform.

 Rendering recommender module output (news streams).

Each of these actions contains the testing of success and error cases. The user input validation has been

tested and the error messages of the modules are being wrapped to more comprehensive messages. The

rendering of the recommender output requires special handling, as it can contain html code and its size

should comply with the stream view limitations.

3.3.6 Installation and administration guidelines

The front end web application is deployed on Amazon CloudFront cloud service. The backend is

deployed on an embedded Tomcat 7 on ATC premises. The user interface is self-explanatory. The main

user interface controls offer extra information in the form of tooltips and illustrations.

3.4 PERSONAL DATA RECEIPTS

3.4.1 Overview

Personal Data Receipts (PDRs) are a way to simplify privacy policies by making them easier to

understand for end-users and customers. Personal Data Receipts are implemented in the form of an email

sent to a new user after registration is completed or to old ones when an update of previous privacy

policies is performed. PDR emails implement a layered privacy policy approach, by providing a concise

summary of what data are collected, how they are used, for what purpose, if third party sharing is

provided and for how long such data are stored. They also provide a quick access to user rights over her

data (including data removal). A mock-up of the PDR is provided below.

 D3.2: Technology Bricks V1|Public

Page 22 of 30

©Copyright ATC and other members of the CPN Consortium 2017

The Personal Data Receipts Creator is the module in charge of creating and sending PDRs in the

scenarios identified above.

3.4.2 Role

Role of the Personal Data Receipts Creator is:

 Receive meta-information from the User Content Profiler in order to create a customised

Personal Data Receipt for a given registered user. Collected meta-information will contain email

address of the user, type of collected personal data, reason for collection and if third party

sharing is involved, legal basis for data processing as well as user rights over her data and Data

Controller contact details. A JSON representation of the exchanged meta-data is provided

below.

{

 "name": "text",

 "email": "text",

 "profile_id": "string",

 "language": "text",

 "data_controller": "v_card",

 "user_data": [{

 "category": "text",

 "purpose": "text",

 "legal_basis": "text",

 "my_rights": "text",

 "start_date": "timestamp",

 "end_date": "timestamp",

 "retention_period": "number of days",

 "where": "text",

 "sharing": "boolean",

 "why": "text"

 }]

}

 D3.2: Technology Bricks V1|Public

Page 23 of 30

©Copyright ATC and other members of the CPN Consortium 2017

 Create a customized Personal Data Receipt using the obtained meta-information to fill a pre-

defined template

 Pass the created Personal Data Receipt in the form of an HTML file to a CPN email service or

by pushing it back as notification through the ATC user app (not implemented in this phase).

 The provided implementation of the PDRs Creator will address the following requirements as

detailed in D3.1: UR-UP9.1.

3.4.3 Internal architecture

3.4.4 API

 The module only provides an API call to generate the creation of a PDR. The following API

/user/pdr POST is provided along with the following data model

{

 "name": "text",

 "email": "text",

 "profile_id": "string",

 "language": "text",

 "data_controller": "v_card",

 "user_data": [{

 "category": "text",

 "purpose": "text",

 "legal_basis": "text",

Personal Data Receipts
Creator

PDR
formatt

er

PDR
sender

Em

ail

user/p

dr

HT

ML

 D3.2: Technology Bricks V1|Public

Page 24 of 30

©Copyright ATC and other members of the CPN Consortium 2017

 "my_rights": "text",

 "start_date": "timestamp",

 "end_date": "timestamp",

 "retention_period": "number of days",

 "where": "text",

 "sharing": "boolean",

 "why": "text"

 }]

}

3.4.5 Test scenarios

 User registration through the ATC user app

 Information on the created profile is extracted from the message bus and API call performed

/user/pdr POST

{

 "name": "Michele",

 "email": "Michele.nati@email.com",

 "profile_id": "QWERTY12345",

 "language": "English",

 "data_controller": "CPN, 101 Euston Road, NW1 2RA, ",

 "user_data": [{

 "category": "text",

 "purpose": "text",

 "legal_basis": "text",

 "my_rights": "text",

 "start_date": "timestamp",

 "end_date": "timestamp",

 "retention_period": "number of days",

 D3.2: Technology Bricks V1|Public

Page 25 of 30

©Copyright ATC and other members of the CPN Consortium 2017

 "where": "text",

 "sharing": "boolean",

 "why": "text"

 }]

}

 HTTP/1.1 200 OK received on success

 Email received

3.4.6 Installation and administration guidelines

A Docker container.

3.5 PRODUCER’S APP

3.5.1 Overview

The producer’s app is an evolution of Cute4LE which is a content curation platform for Marketing

support using a storytelling approach. It is specialized for Large Events management. The platform

allows to create stories reusing and embedding content, including user generated content harvested from

web and social networks. User engagement mechanisms, live stream & Territory monitoring, influencers

& trending topics management and analytics processes are blended together with the aim to exploit

social network dynamics and monitor the activities related to specific events. The mechanisms cover

different phases from pre-event to post-event.

3.5.2 Role

This module, in the 1st prototype, aims to provide the CPN platform with the articles extracted from

media partners’ repositories.

The requirements addressed by this module are:

 AF 4.1 : The system should be able to personalise news from/for the CPN media partners (VRT,

DIAS, DW)

 AF 4.2 : The system should allow for additional content sources, outside the consortium

3.5.3 Internal architecture

 The producer’s app consists of two docker containers: a customized image with the business

logic and a MongoDB image for storage.

 This module retrieves in scheduled way the contents from DW, VRT and DIAS APIs, it stores

these contents in a MongoDB collection, it publishes them to the message broker and it makes

them available to the platform.

 D3.2: Technology Bricks V1|Public

Page 26 of 30

©Copyright ATC and other members of the CPN Consortium 2017

 The module has no external dependencies (without considering the APIs exposed by the media

partners)

3.5.4 API

The producer’s app exposes only an API to the CPN platform in this version of prototype. The API

allows to retrieve a list of articles from and takes as input a list of articles ids. The goal of this API is to

provide the contents to the reader’s app, in base of the action of the recommender module. In fact, the

recommender module, as output of its works, provides a list of articles ids that are used to retrieve the

contents.

The API is exposed for internal use and is documented with OpenAPI specification (Swagger v2.0). The

API is testable via API gateway interface and integration test that involve the orchestrator and

recommender module is expected.

3.5.5 Test scenarios

A readers, through the reader’s app, requires a personalized list of contents. The reader’s app call the

CPN API gateway and a recommendation process start. The orchestrator ask the recommender module

a list of contents for the readers (user ID as input). The output of recommendation work is a list of

articles ids that is passed as input to producer’s app. The producer’s app retrieve the list of contents from

the storage and return them to the reader’s app (via orchestrator).

3.5.6 Installation and administration guidelines

The module consists in two docker container. A docker-compose.yml is provided to build and push the

service on CPN private registry.

The module exposes only an internal API and not requires administration operations.

The internal port is 8080.

3.6 RECOMMENDER

3.6.1 Overview

The module is in charge of computing the most suitable news recommendations for CPN users. It has

to analyze the users’ profiles and collected news to find the most “interesting” news items to be proposed

by the app.

3.6.2 Role

The current state of the art techniques for recommending items are based on two main areas: content

based (that relies on good semantic modelling/feature extraction and selection on the items to be

recommended) and collaborative filtering techniques (that are essentially domain-independent and take

into account network metrics based on emerging similarity graphs of users and items). Our system uses

an hybrid approach that uses variable proportions of the mentioned techniques for each user learning

(using Machine Learning techniques) from explicit and implicit feedback given by the users themselves:

clicks, ratings, sharings, etc. The system is customizable for including content-delivery strategies’

optimization: multichannel and date/time optimization (predicting the probability of interests at a given

time on a given channel) and includes mechanisms for fostering “serendipitous” discoveries.

 D3.2: Technology Bricks V1|Public

Page 27 of 30

©Copyright ATC and other members of the CPN Consortium 2017

The recommender exploits the features extracted from the document enriching modules: relation

extraction, user modelling, user feedbacks, topic annotation.

3.6.3 Internal architecture

The module relies on the following components:

 Components for retrieving messages from a broker

They are in charge of connecting to the kafka broker end retrieve messages that will trigger a new

recommendation for a specific user

 Recommendation components

Elaboration pipelines that are used to actually compute the recommendations for all the users: the

technique used are content-based recommendations implemented relying on Apache Solr search server

and NLP pipelines and “Collaborative filtering techniques” using custom and state of the art libraries

such as python Surprise and Implicit.

 Storage components

Storing the result of the recommendation process: the backends used in the storage module are

MongoDB and Apache Solr search server.

 REST API Layer

A python Flask layer of services exposing the CRUD operations for recommendation retrieval.

3.6.4 API

Data consumed

The data consumed by this module is the output of DS4Biz-UserModelling module and the output of

the news and social media collector modules

Data produced

We will start with a very simple schema for the recommendations to be updated in the next releases.

Model schema:

[{

id : String, // Internal Id of the recommendation

user_id : String, // Internal Id of the user

score : Number, // The relevance score of this recommendation as computed by the recommender engine

date : Date // When this recommendation was computed

}]

Examples

 D3.2: Technology Bricks V1|Public

Page 28 of 30

©Copyright ATC and other members of the CPN Consortium 2017

[

 {

 "id":"xxxxxx",

 "user_id":"yyyyyyy",

 "item_id":"zzzzzzz",

 "date":"Fri, 11 May 2018 08:40:10 +0000",

 "score":0.8

 },

 {

 "id":"xxxxxx",

 "user_id":"yyyyyyy",

 "item_id":"zzzzzzz",

 "date":"Fri, 11 May 2018 08:40:10 +0000",

 "score":0.5

 }

]

3.6.5 Test scenarios

The module has been tested in isolation and in a full integrated way computing recommendations based

on the output of the User Modelling module. The pipeline is currently active and continuously

computing recommendations for users as new events occur (e.g. documents are added, user profiles are

updated, etc).

3.6.6 Installation and administration guidelines

The Recommender module is composed of several submodules all deployable by using docker

orchestration technologies (e.g Cattle, Kubernets, etc.). It is easily deployable using CPN platform’s

orchestration dashboard (based on Rancher) and a docker-compose file with all the relevant settings has

been provided.

 D3.2: Technology Bricks V1|Public

Page 29 of 30

©Copyright ATC and other members of the CPN Consortium 2017

4 CONCLUSIONS

This Deliverable reports on the implementation of the technological infrastructure of the 1st prototype

of the CPN platform. Subsequent versions of the platform components are expected to provide updated

versions of the currently available components, APIs, and services, along with possible new

components, APIs, and services, in order to adapt to possible new requirements and functionality needed

by the constantly evolving CPN platform.

The components, APIs, and services included in the first version of the platform customization

infrastructure and components described in this deliverable have been designed and developed

according to the user requirements, as described in deliverable D1.1 “User Requirements Model”.

 D3.2: Technology Bricks V1|Public

Page 30 of 30

©Copyright ATC and other members of the CPN Consortium 2017

5 REFERENCES

[1] CPN: D1.1 User Requirements Model

[2] CPN: D2.1 CPN Reference Architecture

[3] CPN: D3.1 Initial Design & APIs of Technology Bricks

