
Projectcpn.eu

Grant Agreement No.: 761488

D3.1: Initial Design and APIs of

Technology Bricks

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 2 of 39

©Copyright ATC and other members of the CPN Consortium 2017

This deliverable provides the first view of technology bricks connecting the CPN available technology

to the user requirements on the one side and the planned platform prototypes on the other. This provides

the first step for the planning of the CPN platform prototypes with the first one expected in the next

three months.

The prioritization of the features to implement for the first prototype have been carried out in such a

way as to respect the expected timing, but at the same time release meaningful functionalities, that will

be improved and extended in the next prototypes.

The next step is the initiation of an Agile prototyping process which is expected to provide rapid results

through two-week Sprint intervals.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 3 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Work package WP 3

Task T3.1

Due date 31/3/2018

Submission date 31/3/2018

Deliverable lead ATC

Version 1.0

Authors Marina Klitsi, Nikos Sarris, Efstratios Tzoannos, Stamatis Rapanakis (ATC)

Reviewers Vincenzo Croce , Bosco Ferdinando (ENG)

Keywords Technology Bricks, APIs

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 24/01/2018 Table of Contents Marina Klitsi (ATC)

V0.2 23/3/2018 1st completed version

including partners’

contribution

Nikos Sarris, Stamatis Rapanakis, Marina Klitsi (ATC), Matthias

Strobbe (IMEC), Michele Nati(DIGICAT), Bosco Ferdinando

(ENG), Fulvio D'Antonio (LiveTech)

V0.3 25/3/2018 Edited final version

including prioritisation

of requirements

Nikos Sarris, Marina Klitsi (ATC)

V0.4 28/3/2018 Internal Review Ferdinando Bosco, Vincenzo Croce (ENG)

V1.0 29/3/2018 Final version Nikos Sarris, Marina Klitsi (ATC)

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 4 of 39

©Copyright ATC and other members of the CPN Consortium 2017

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any use that

may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to CPN project and Commission Services

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 5 of 39

©Copyright ATC and other members of the CPN Consortium 2017

EXECUTIVE SUMMARY

The purpose of this deliverable is to enumerate the components and services foreseen in the project with

a focus on those to be included in the first prototype of the platform. For each component, a brief

description of its functionality is provided, along with parameters, input, output, and API examples

(where applicable).

The primary focus of the third work package is to provide the needed infrastructure for supporting the

development of the CPN platform, and to provide the set of components for supporting the

implementation of the CPN pilots. The CPN platform is conceptually composed of several layers, which

in turn consist of the different modules that will enable the system functionalities. The CPN platform

foresees the integration of three different layers of modules:

1. The Content Layer: will focus on the extraction of relevant information from the different

content sources. This layer is composed of two types of services: (1) content procurement (for

structured and unstructured heterogeneous data stream gathering) and (2) knowledge extraction

(for user personalisation such as relations identification and clustering).

2. The Mapping Layer: The goal of this layer is to provide services which map content onto users.

The services in this layer will make content available to the users through personalisation and

contextualization processes. Further, the layer also includes permission and contract aspects,

which will assist with overcoming legal and ethical issues, as well as preserving privacy criteria

and copyright.

3. The User Layer: this will offer specific services to deal with the user data itself. It will contain

modules that create user profiles which potentially include preferences, socio-demographical

information, history etc., as well as services to appropriately handle user context.

At this stage we foresee the CPN platform in need of the following 13 technology bricks, as described

in this deliverable:

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Relation Extraction

Topic Extractor

Uplifting/Depressing Article Classifier

Frame Based Slot-Filling System

Sentiment

Users Technology Bricks

User Modelling

Reader's App - TRULY MEDIA

Personal Data Receipts

Mapping Technology Bricks

Producer's App - CUTE4LE

Reward Framework

Twitter Analytics - TRUTHNEST

Recommender

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 6 of 39

©Copyright ATC and other members of the CPN Consortium 2017

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 5

TABLE OF CONTENTS .. 6

LIST OF FIGURES .. 9

LIST OF TABLES .. 10

ABBREVIATIONS ... 11

1 INTRODUCTION.. 12

2 SUMMARY OF REQUIREMENTS .. 13

3 CONCEPTUAL ARCHITECTURE & WORKFLOWS ... 21

4 MODULES DESCRIPTION... 24

4.1 Producer's app – cute4LE .. 24

4.1.1 Tool Overview .. 24

4.1.2 Tool application Programming Interfaces.. 24

4.1.3 Technologies used.. 26

4.1.4 3rd party dependencies & hosting environment .. 26

4.1.5 Hardware specifications... 26

4.1.6 Packaging ... 27

4.2 reward framework .. 27

4.2.1 Tool Overview .. 27

4.2.2 Tool application Programming Interfaces.. 27

4.2.3 Technologies used.. 27

4.2.4 3rd party dependencies & hosting environment .. 27

4.2.5 Hardware specifications... 27

4.2.6 Packaging ... 27

4.3 tRULY MEDIA ... 28

4.3.1 Tool Overview .. 28

4.3.2 Tool application Programming Interfaces.. 28

4.3.3 Technologies used.. 28

4.3.4 3rd party dependencies & hosting environment .. 28

4.3.5 Hardware specifications... 28

4.3.6 Packaging ... 28

4.4 USERMODELLING.. 28

4.4.1 Tool Overview .. 28

4.4.2 Tool application Programming Interfaces.. 28

4.4.3 Technologies used.. 29

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 7 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.4.4 3rd party dependencies & hosting environment .. 29

4.4.5 Hardware specifications... 29

4.4.6 Packaging ... 29

4.5 Twitter analytics - truthnest ... 29

4.5.1 Tool Overview .. 29

4.5.2 Tool application Programming Interfaces.. 29

4.5.3 Technologies used.. 29

4.5.4 3rd party dependencies & hosting environment .. 29

4.5.5 Hardware specifications... 29

4.5.6 Packaging ... 30

4.6 PERSONAL DATA RECEIPTS ... 30

4.6.1 Tool Overview .. 30

4.6.2 Tool application Programming Interfaces.. 30

4.6.3 Technologies used.. 30

4.6.4 3rd party dependencies & hosting environment .. 30

4.6.5 Hardware specifications... 30

4.6.6 Packaging ... 30

4.7 RECOMMENDER .. 31

4.7.1 Tool Overview .. 31

4.7.2 Tool application Programming Interfaces.. 31

4.7.3 Technologies used.. 31

4.7.4 3rd party dependencies & hosting environment .. 31

4.7.5 Hardware specifications... 31

4.7.6 Packaging ... 31

4.8 Semantic lifting .. 31

4.8.1 Tool Overview .. 31

4.8.2 Tool application Programming Interfaces.. 32

4.8.3 Technologies used.. 32

4.8.4 3rd party dependencies & hosting environment .. 32

4.8.5 Hardware specifications... 32

4.8.6 Packaging ... 32

4.9 generic training model for relation extraction .. 33

4.9.1 Tool Overview .. 33

4.9.2 Tool application Programming Interfaces.. 33

4.9.3 Technologies used.. 33

4.9.4 3rd party dependencies & hosting environment .. 33

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 8 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.9.5 Hardware specifications... 33

4.9.6 Packaging ... 33

4.10 TOPIC EXTRACTOR ... 33

4.10.1 Tool Overview .. 33

4.10.2 Tool application Programming Interfaces.. 34

4.10.3 Technologies used.. 34

4.10.4 3rd party dependencies & hosting environment .. 34

4.10.5 Hardware specifications... 34

4.10.6 Packaging ... 34

4.11 Uplifting/Depressing Article Classifier ... 34

4.11.1 Tool Overview .. 34

4.11.2 Tool application Programming Interfaces.. 35

4.11.3 Technologies used.. 35

4.11.4 3rd party dependencies & hosting environment .. 35

4.11.5 Hardware specifications... 35

4.11.6 Packaging ... 35

4.12 Frame based slot-filling system ... 36

4.12.1 Tool Overview .. 36

4.12.2 Tool application Programming Interfaces.. 36

4.12.3 Technologies used.. 36

4.12.4 3rd party dependencies & hosting environment .. 36

4.12.5 Hardware specifications... 36

4.12.6 Packaging ... 37

4.13 sentiment .. 37

4.13.1 Tool Overview .. 37

4.13.2 Tool application Programming Interfaces.. 37

4.13.3 Technologies used.. 37

4.13.4 3rd party dependencies & hosting environment .. 37

4.13.5 Hardware specifications... 37

4.13.6 Packaging ... 37

5 CONCLUSIONS .. 38

6 REFERENCES ... 39

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 9 of 39

©Copyright ATC and other members of the CPN Consortium 2017

LIST OF FIGURES

FIGURE 1: CONTENT CREATION WORKFLOW .. 21

FIGURE 2: READER’S WORKFLOW ... 21

FIGURE 3: USER PROFILE WORKFLOW .. 22

FIGURE 4: OVERALL CONCEPTUAL ARCHITECTURE .. 23

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 10 of 39

©Copyright ATC and other members of the CPN Consortium 2017

LIST OF TABLES

TABLE 1: FIRST PROTOTYPE REQUIREMENTS ... 14

TABLE 2: FIRST PROTOTYPE TECHNOLOGY BRICKS .. 14

TABLE 3: SECOND PROTOTYPE REQUIREMENTS .. 17

TABLE 4: SECOND PROTOTYPE TECHNOLOGY BRICKS ... 17

TABLE 5: THIRD PROTOTYPE REQUIREMENTS ... 19

TABLE 6: THIRD PROTOTYPE TECHNOLOGY BRICKS ... 19

TABLE 7: LIST OF REQUIREMENTS UNDER QUESTION ... 20

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 11 of 39

©Copyright ATC and other members of the CPN Consortium 2017

ABBREVIATIONS

API Application Programming Interface

AWS Amazon Web Services

CPN Content Personalisation Network

CRUD Create, Read, Update, Delete

CSV Comma-separated values

GDPR General Data Protection Rules

JDBC Java DataBase Connectivity

JSON JavaScript Object Notation

NLP Natural Language Processing

OCR Optical Character Recognition

PDF Portable Document Format

RDF Resource Description Framework

REST Representational State Transfer

SM Social Media

XML eXtensible Markup Language

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 12 of 39

©Copyright ATC and other members of the CPN Consortium 2017

1 INTRODUCTION

This Deliverable contains the basic description of the conceptual architecture and the technological

infrastructure of the CPN platform which is composed by what we call 'technology bricks'. Although

some technology bricks were defined even in the CPN project proposal, it is expected that changes,

adjustments and additions will be needed during the implementation phase of the project, in order to

refine and finalize all the bricks that have to be offered within the CPN platform.

The CPN user requirements have now been collected through numerous workshops, interviews and user

surveys and are explained in D1.1 “User Requirements Model”. Following this work the user partners

cooperated with the technical partners to agree on a prioritisation, classifying the requirements into one

of the three expected prototypes (of the CPN platform). Of course, there are also some requirements for

which it is still unclear how and if the CPN platform will manage to satisfy, as they seem to be beyond

the ambition of the project, given the current (relevant) technology state of the art. This classification is

included in this deliverable and accompanied by a plan that describes which technology bricks are

needed to meet the requirements of each prototype, paying close attention to the first one that is easier

to visualise at this point. The conceptual workflows that are necessary to satisfy the requirements of at

least the first prototype are also described in this deliverable.

One of the main goals of the document is to enumerate the technology bricks that are foreseen at this

point of the project necessary to satisfy the user requirements. For each technology brick, a brief

description of its functionality is provided, along with parameters, inputs, output, and API examples

(whether applicable).

The structure of the deliverable is organized as follows: Section 2 provides an overview of the prioritised

requirements. Section 3 provides details on the conceptual architecture and workflows of the technology

bricks while Section 4 describes the first versions of the CPN technology bricks infrastructure. Finally,

section 5 concludes this document.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 13 of 39

©Copyright ATC and other members of the CPN Consortium 2017

2 SUMMARY OF REQUIREMENTS

As explained in the introduction following the definition of the user requirements we have gone through

the exercise of prioritising the requirements, based on what is technically possible in the time plan

foreseen for each one of the CPN platform prototypes.

We therefore enlist here the requirements we will try to satisfy in each one of the three prototypes,

including also a list of requirements that need to be further analyzed and which we currently do not see

how they will satisfied in the course of this project. At the end of each prototype category we also list

the modules that we see necessary for satisfying all requirements.

PROTOTYPE 1

Requirement category Requirement ID Requirement description

UR-UP1: Interests

(Categories, Entities,

Values): What topics is

the user interested in?

UR-UP 1.2
The system should create/refine interests based on

the user’s consumption habits

UR-UP 1.4
The system should refine the user’s interests through

frequent interaction with the user (talkback)

UR-UP 1.6
The system should assign preferences (1-5) to

categories based on the users behaviour

UR-UP 1.7
The system should allow users to assign and change

preferences (1-5) to categories themselves

UR-UP 1.8

The system must allow users to completely turn off

the personalisation algorithm and receive content as

is and vice versa

UR-UP2: Network:

Making use of

connections the user

already has through

social media.

UR-UP 2.7
The system should allow users to share content from

the CPN system to social networks

UR-UP3: Time &

Length: When does the

user prefer to consume

content and for how

long?

UR-UP 3.1
The system must allow the user to choose a preferred

time frame or frames to consume content

UR-UP 3.2
The system should create/refine time frames based on

the user’s consumption habits

UR-UP 3.3
The system should refine the user’s time frames

through frequent interaction with the user (talkback)

UR-UP 3.5
The system must allow the user to postpone a time

frame for a chosen amount of time.

UR-UP 3.6
The system must allow the user to ignore a time

frame completely

UR-UP5: Location &

Surroundings: Where is

the user and what's

going on around

him/her?

UR-UP 5.2
The system should allow the user to set a home/main

interest location

UR-UP9: User Profile

Management: Giving

the user transparency

and control over their

data

UR-UP 9.1

The system must provide transparent, simple and

easy-to-understand information on what user data are

collected, for what purpose and how they are stored

UR-UP 9.2

The system should require informed and explicit

consent for processing of personal user data, beyond

those required for the provisioning of the agreed

service

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 14 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

UR-AF1: Bursting the

Filter Bubble: How can

CPN avoid filter

bubbles and echo

chambers?

UR-AF 1.5
The system should allow users to choose favourite

sources

UR-AF2: Avoiding

FOMO: How to ensure

people think they know

everything there is to

know

UR-AF 2.4
The system should show users only a limited number

of items at once

UR-AF 2.5

Once all articles proposed have been consumed, the

system should only offer more content upon request

by the users

UR-AF3:

Content/Format: In

which way do we have

to prepare content for

the user?

UR-AF 3.4
The system should be able to offer both news content

and entertainment

UR-AF 3.5
The system should be able to offer both locally and

globally relevant content

UR-AF 3.8
The system should allow users to filter content by

language

UR-AF4: Sources:

Where does the

necessary content come

from?

UR-AF 4.1
The system should be able to personalise news

from/for the CPN media partners (VRT, DIAS, DW)

UR-AF 4.2
The system should allow for additional content

sources, outside the consortium

UR-AF7: User

Feedback: Asking users

to help improve the

system

UR-AF 7.2

The system should include guided feedback for

specific elements of the system, allowing users to

(help) improve it

Table 1: First prototype requirements

Foreseen necessary technology bricks

The foreseen technology bricks necessary for this prototype are illustrated in the shaded cells of the table

below.

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Relation Extraction

Topic Extractor

Uplifting/Depressing Article Classifier

Frame Based Slot-Filling System

Sentiment

Users Technology Bricks

User Modelling

Reader's App - TRULY MEDIA

Personal Data Receipts

Mapping Technology Bricks

Producer's App - CUTE4LE

Reward Framework

Twitter Analytics - TRUTHNEST

Recommender
Table 2: First prototype technology bricks

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 15 of 39

©Copyright ATC and other members of the CPN Consortium 2017

PROTOTYPE 2

Requirement category Requirement ID Requirement description

UR-UP1: Interests

(Categories, Entities,

Values): What topics is

the user interested in?

UR-UP 1.5

The system should refine the interests based on

the user’s behaviour on social networks (through

data upload or connection of the networks)

UR-UP2: Network:

Making use of

connections the user

already has through social

media.

UR-UP 2.1

The system should allow for social media

integration to recommend content based on what

connections like, read and share

UR-UP 2.2

The system should offer a recommendation of

articles based on most liked/most shared numbers

from a users network and beyond that. (Nuzzle-

Feature)

UR-UP 2.3

The system should allow for social media

integration to keep track of what the user has

already seen elsewhere.

UR-UP 2.4

The system should be able to analyse whom a user

has been most interacting with on social media to

prioritize the users for the personalisation on

social media to prioritize the users for the

personalisation

UR-UP 2.5
The system should allow the user to down-/upload

their network connections through user account.

UR-UP 2.6
The system should allow users to search for other

users on social media to build direct connections

UR-UP 3: Time &

Length: When does the

user prefer to consume

content and for how long?

UR-UP 3.4

The system should use the time frames in order to

decide how many items of what length and of

what format it offers to the user length and of

what format it offers to the user

UR-UP 3.7
The system should learn from these user

responses and adjust its offerings accordingly

UR-UP 5: Location &

Surroundings: Where is

the user and what's going

on around him/her?

UR-UP 5.1

The system should make use of the location data

of the user (permission of the user granted) to

choose the right content for the user

UR-UP 5.3

The system should make use of the location data

of the user to determine the best point in time to

offer content

UR-UP 5.4

The system should try to determine the

surroundings of the user based on either just

location data or location data and direct

interaction with the user (talkback)

UR-UP 5.5

The system must give the user an easy option to

agree to or withdraw from using location data for

personalised offers

UR-UP 6: Knowledge

(Management): What

does the user already

know?

UR-UP 6.1

The system must keep track of what content the

user has already consumed on a piece and on a

content basis within CPN and beyond

UR-UP 6.2

The system must keep track of how much of each

item users consume, where they stop, continue

and what they skip

UR-UP 6.3
The system should interact with the user in order

to refine user interests in regards to why

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 16 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

something was skipped or something was

consumed completely

UR-UP 8: Importance for

user: What is relevant for

the user, outside their

given interests?

UR-UP 8.2

The system should always offer content that has a

direct influence on the users (e.g. life-

threatening), overruling other interest settings

UR-UP 9: User Profile

Management: Giving the

user transparency and

control over their data

UR-UP 9.3

The system must give the user a full overview of

his/her data and allow them full control, including

update and removal of data

UR-UP 9.4
The user must be able to change and overwrite

settings in their profile

UR-UP 9.5

The user must be able to download their profile

data in CPN in a machine readable format and a

user friendly format

UR-AF 1: Bursting the

Filter Bubble: How can

CPN avoid filter bubbles

and echo chambers?

UR-AF 1.6

The system should offer the user a random news

selection upon request based on certain data and

preferences of the users profile, which the user

can choose

UR-AF2: Avoiding

FOMO: How to ensure

people think they know

everything there is to

know

UR-AF 2.1
The system should show users who else from their

network has consumed the same content item.

UR-AF 2.2
The system should show users what else their

network has shown, if there are differences

UR-AF 2.3
The system should be able to show users the

content item from another user (anonymously)

UR-AF 3:

Content/Format: In which

way do we have to

prepare content for the

user?

UR-AF 3.7

The system should be able to give the user a

timeline overview of events regarding a specific

topic

UR-AF 5: Transparency:

Giving the user control &

understanding over the

content he sees.

UR-AF 5.1
The system must offer the user an easy to access

and easy to understand overview of their profile

UR-AF 5.2
The system must offer users easy access to their

profile in order to change settings and data

UR-AF 6: Archive:

Making content available

beyond the moment

UR-AF 6.1
The system must allow users to access content

again that they have already opened before

UR-AF 6.2

The system should allow users to consume

content beyond their predefined timeframe after

an interaction with the user (talkback)

UR-AF 6.3
The system should allow users to actively save

articles for later consumption

UR-AF 8: Temporary

Categories: Users can

temporarily change the

personalisation algorithm

UR-AF 8.1
The system should allow users to search for

specific topics they are temporarily interested in

UR-AF 8.2
The system should allow users to add this search

as a temporary personalisation category

UR-AF 8.3
The system should allow users to define a specific

time frame for this temporary change

UR-AF 9: Mute topics:

Exclude topics from the

personalisation for a

certain time

UR-AF 9.1

The system should allow users to define keywords

and logical combinations of them to exclude

content from their personalisation

UR-AF 9.2
The system should allow users to define a time

frame per keyword/logical combination

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 17 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

UR-AF 9.3
The system should be able to overwrite this

exclusion for important breaking rules

UR-PS 1: Detailed

Analytics: Giving

Newsrooms a more

detailed feedback on their

audience

UR-PS 1.1
The system should show the access to items

through users by numbers (who, when, how long)

UR-PS 1.3
The system should show which topics were most

interesting to users

Table 3: Second prototype requirements

Foreseen necessary technology bricks

The foreseen technology bricks necessary for this prototype are illustrated in the shaded cells of the table

below.

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Relation Extraction

Topic Extractor

Uplifting/Depressing Article Classifier

Frame Based Slot-Filling System

Sentiment

Users Technology Bricks

User Modelling

Reader's App - TRULY MEDIA

Personal Data Receipts

Mapping Technology Bricks

Producer's App - CUTE4LE

Reward Framework

Twitter Analytics - TRUTHNEST

Recommender
Table 4: Second prototype technology bricks

PROTOTYPE 3

Requirement category Requirement ID Requirement description

UR-UP 1: Interests

(Categories, Entities,

Values): What topics is

the user interested in?

UR-UP 1.3

The system should be able to offer

personalised content on the basis of the

users mood or values

UR-UP 4: Preferred

Media: Which type of

content does the user

prefer?

UR-UP 4.1
The system must allow the user to choose

preferred types of content

UR-UP 4.2

The system should set/refine preferred

types of content based on the user’s

consumption habits and the timing

UR-UP 4.3

The system should refine the user’s

preferred types of content through

frequent interaction with the user

(talkback)

UR-UP 6: Knowledge

(Management): What

does the user already

know?

UR-UP 6.4

The system should be able to offer

insights and advice based on what it learn

about what a user consumed in relation to

a certain entity (e.g. a place)

UR-UP 6.5
The system should allow the user to delete

part of the systems knowledge for specific

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 18 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

time frames back in time from the

moment of viewing

UR-UP 7: Devices: On

what device is the user

consuming content?

UR-UP 7.1
The system should check on what device

the user is consuming the content

UR-UP 7.2

The system should adjust its content

offering based on the type of device the

user is using

UR-UP 7.3

The system should try to make smart use

of device data to determine the

surroundings of the user and adjust the

content strategy accordingly

UR-UP 8: Importance for

user: What is relevant for

the user, outside their

given interests?

UR-UP 8.1

The system should combine reading

habits and knowledge about the user to

provide smart updates on things the user

could be interested in, even if this doesn’t

fit his/her set interests

UR-UP 8.3

The system should be able to surprise the

user with content, he/she would not have

chosen themselves

UR-UP 9: User Profile

Management: Giving the

user transparency and

control over their data

UR-UP 9.6
The system should allow the user to add

external data to update their profile

UR-AF 1: Bursting the

Filter Bubble: How can

CPN avoid filter bubbles

and echo chambers?

UR-AF 1.1

The system should offer users an

overview of other sources, covering the

same topic

UR-AF 1.3

The system should offer the user an easy

overview of what content from which

sources he has consumed over a certain

period of time

UR-AF 3:

Content/Format: In which

way do we have to

prepare content for the

user?

UR-AF 3.2

The system should offer the user a short

overview of all important headlines at a

specific point in time with access to more

details upon request

UR-AF 5: Transparency:

Giving the user control &

understanding over the

content he sees

UR-AF 5.3

The system must make it transparent to

the users why they are shown certain

content, based on an item level

UR-AF 6:Archive:

Making content available

beyond the moment

UR-AF 6.4

The system should be able to memorize

where a user left off and restart at the

same point

UR-AF 7: User Feedback:

Asking users to help

improve the system

UR-AF 7.1
The system should offer user feedback

requests in a playful/entertaining way

UR-AF 7.3

The system should allow users to assign

both existing or new attributes

(categories, moods etc.) to a content item

UR-AF 7.4
The system should be able to offer a

feedback interaction to determine the

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 19 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Requirement category Requirement ID Requirement description

ground level of personalisation based on

mood, time and interest

UR-PS 1: Detailed

Analytics: Giving

Newsrooms a more

detailed feedback on their

audience

UR-PS 1.4

The system should be able to show these

numbers during the creation process of

the content

UR-PS 2: Integration:

How should CPN be

connected to the

production side?

UR-PS 2.1
The system should allow for an easy

integration into the producers workflow

UR-PS 2.2

The system should provide contract

templates to allow freelancers to easily

work together and with editors, to define

and track the scope of individual

contributions and expected revenues

UR-PS 2.3

The system should allow producers to

transparently see how often their

contributions are used and distributed to

readers

UR-PS 2.4

The system should allow producers to

export the record of their publications

through standardized and interoperable

formats

UR-PS 2.5

The system should allow for an easy

contribution of content from different

publishers through standardised interfaces

UR-PS 2.7
The system should allow editors to easily

add missing attributes to articles manually
Table 5: Third prototype requirements

Foreseen necessary technology bricks

The foreseen technology bricks necessary for this prototype are illustrated in the shaded cells of the table

below.

Layers Name of 'technology brick'

Content Technology Bricks

Semantic Lifting

Relation Extraction

Topic Extractor

Uplifting/Depressing Article Classifier

Frame Based Slot-Filling System

Sentiment

Users Technology Bricks

User Modelling

Reader's App - TRULY MEDIA

Personal Data Receipts

Mapping Technology Bricks

Producer's App - CUTE4LE

Reward Framework

Twitter Analytics - TRUTHNEST

Recommender
Table 6: Third prototype technology bricks

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 20 of 39

©Copyright ATC and other members of the CPN Consortium 2017

REQUIREMENTS UNDER QUESTION

At this point of the project it is not very clear how we will be able to satisfy these requirements. For this

reason, we have classified them in this ‘pending’ category until we have a more mature view of the CPN

platform and manage to discover ways in which these requirements can be satisfied.

Requirement category Requirement ID Requirement description

UR-UP 1: Interests (Categories,

Entities, Values): What topics is

the user interested in?

UR-UP 1.1

The system must allow the user to

manually choose their interests that

later define the personalisation

UR-AF 1: Bursting the Filter

Bubble: How can CPN avoid filter

bubbles and echo chambers?

UR-AF 1.2

The system should highlight

differences between the perspectives

of different sources on a similar topic

UR-AF 1.4

The system should make it easy for

the user to see a bias of a content item

or source

UR-AF 3: Content/Format: In

which way do we have to prepare

content for the user?

UR-AF 3.1

The system should offer content items

in small, easy to consume and logical

packages, allowing the user to

consume them bit by bit

UR-AF 3.3

The system should allow users to

choose whether they prefer an

overview or all content at once

UR-AF 3.6

The system should be able to put

global news in a local relevance

context for users

UR-AF 3.9

The system should allow users to filter

content by complexity within a

language

UR-PS 1: Detailed Analytics:

Giving Newsrooms a more

detailed feedback on their

audience

UR-PS 1.2

The system should show which parts

(paragraphs, entities) of an item were

most interesting to users

UR-PS 2: Integration: How should

CPN be connected to the

production side?

UR-PS 2.6

The system should give feedback on

what attributes are best used on

content to improve the personalisation

performance
Table 7: List of requirements under question

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 21 of 39

©Copyright ATC and other members of the CPN Consortium 2017

3 CONCEPTUAL ARCHITECTURE & WORKFLOWS

Considering the expected CPN platform at a conceptual level, we can separate three basic parts in its

functionality: the two front-end applications (for content producers and consumers) and the user

modelling process. Based on these we can define 3 respective important workflows: the content creation

workflow, the client apps (mobile, web) serving content and the user profile workflow.

The content creation workflow is mainly served by the web application for producers (DW, VRT and

Dias). This will be based on Cute4LE which will be suitably modified to serve the purposes of pushing

content into the platform. The content will be published to the message queue. The web application will

also interact with the reward framework in order to allow producers to form collaborative teams for

enriching or creating new content.

Figure 1: Content creation workflow

The front end application for content consumers (readers workflow) will be based on a customized

version of TrulyMedia which already provides many useful functionalities for browsing through

contents and organising it in thematic collections.

Figure 2: Reader’s workflow

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 22 of 39

©Copyright ATC and other members of the CPN Consortium 2017

This 'reader's app' will communicate through the API gateway with the CPN platform. All calls to the

CPN API will be directed to the API gateway. The API gateway will be responsible for the distribution

of all calls to the related modules, based on the workflow. Α message queue will be used to implement

a publish/subscribe protocol in order to enable modules fetch and analyse content. The reader's app will

be both pulling and pushing content to the platform, as it will be the front end for the users but will also

be bringing content from Social Media sources, following user queries as well as queries automatically

generated by the recommender module in search of SM content that matches the interests of the user.

The plan is to avoid centralized databases. Therefore, all modules are going to follow a Microservices

approach and store data internally on their own repository. The “publish – subscribe” pattern covers the

need for asynchronous communication and provides greater network scalability and a dynamic network

topology.

Figure 3: User profile workflow

The user profile workflow refers to the user model creation and maintenance. User Modelling will

listen (through the message queue) to all user actions in order to modify the user profile accordingly. It

will also be retrieving input from the Twitter Analytics module (to be based on Truthnest) providing

useful information regarding the user activity, network and preferences in Twitter. Twitter Analytics

will also be responsible for providing trending news on Twitter. Finally, User Modelling will also

collaborate with Personal Data Receipts to allow the user to have a transparent view to all information

we keep and utilise around his/her personal profile.

All analysis modules (abstracted here under Semantic Indexing) will be retrieving incoming content to

process and index it in a Triple Store so that it can be retrieved and pushed to the user following

commands of the Recommender, which has direct access to all user models.

The overall depiction of the workflow and the interactions of the components is shown in the following

diagram

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 23 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Figure 4: Overall conceptual architecture

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 24 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4 MODULES DESCRIPTION

This section describes the modules needed to implement within the CPN platform all the features that

will meet the user requirements.

4.1 PRODUCER'S APP – CUTE4LE

4.1.1 Tool Overview

Cute is a content curation system that integrates search, storytelling, analysis and monitoring features to

support content marketing strategies. The curator can create stories aggregating and integrating content

from all major web sources including social networks.

Cute allows you to define content marketing strategies through research planning, integration with

analytics systems and social content analysis, enabling you to discover new trends, monitor social

reputation and the effectiveness of promotional campaigns.

Cute for Large Events (Cute4LE) is the evolution of original Cute tool with the specific aim to tailor

contents curation to address large events specific needs (pre-event, event, post-event timeframes).

4.1.2 Tool application Programming Interfaces

Cute4LE offers a set of front-end features, through web interface and some back-end services as REST

APIs.

Front-End Features

The two main macro-features of Cute4LE are storytelling and monitoring.

Storytelling: is the core feature and it is composed of several steps: search, aggregate, editing and

publish

Search: It integrates all the major social networks APIs and different search methods (keywords, users,

locations). It allows to find user generated contents in different sources at the same time. The system

allows also to schedule periodic researches and include new content providers.

Aggregate: The user can collect different contents and store them in a personal archive. The archive can

be temporary, waiting to create a story (as a shop cart), or permanent.

Edit: A collaborative editing system that allows to create a story with user generated contents and/or

personal contents

Publish: The user can publish or share a story on websites and social networks.

Monitoring: The are two principal monitoring mechanisms: livestream and territory monitoring

Livestream: A real-time monitoring mechanism developed to support events stories creation. It allows

to expose real-time monitoring of hashtags from major Social Networks. In particular it includes:

continuous monitoring based on hashtags (Twitter and Instagram), search on Facebook pages and search

public contents on all other social networks.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 25 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Territory monitoring: A monitoring mechanism to cluster contents by a geo-referred position. It supports

events stories creation focussing the search on a relation of geographic position of the contents produced

by users. This mechanism allows to set a geo-referred position and monitor events arranged and planned

in the specific territory. The analysis of stream of contents injected results in the identification of three

main analytics categories: influencers, trending topics, most popular contents

REST APIs

All the APIs must be authenticated and the output format is JSON.

Search: Search contents on an external content provider or a social network.

Needs -> External content providers

Input -> Search parameters (keywords, location …)

Output -> Filtered contents based on search parameters

Method HTTP Request Description

GET /api/search/<source_name> Generic search for all content providers

Stories: Stories are created through web interface

Needs -> User generated contents and/or personal contents uploaded on platform (in Storybrick format)

Input -> No

Output -> Stories

Method HTTP Request Description

GET /api/story/find Return all stories

GET /api/story/get Get story by id

Storybricks: All the contents retrieved from external sources or uploaded by users, are formatted

uniformly into a Storybrick. A storybrick is the smallest unit that can be included into a story.

Needs -> No

Input -> No

Output -> Contents formatted uniformly and saved on platform

Method HTTP Request Description

GET /api/storyBrick/get Get content by id

GET /api/storyBrick/getByOriginId Get content by original source id

Livestream: Livestream is a frequently automatic search on different sources

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 26 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Needs -> External content provider

Input -> Frequency, search parameters (source, keyword)

Output -> Auto-updated results (livestream)

Method HTTP Request Description

POST /api/liveStream/save Create a new livestream

GET /api/liveStream/get Get livestream by id and its contents

Analytics: Analytics data related to the different objects of Cute4LE

Needs -> Objects to analyze (livestream, live-search, automatic-search)

Input -> the object to analyze

Output -> Aggregated analytics data

Method HTTP Request Description

GET /api/analytics/analyzeLiveStream Analyze a livestream

GET /api/analytics/analyzeLiveContents Analyze a search

GET /api/analytics/analyzeScheduledContents Analyze a scheduled or a geo-referred

search

4.1.3 Technologies used

Cute4LE is realized exploiting an Open Source stack optimized for scalability and Data Input /Output

effectiveness (MEAN stack).

MEAN is a full javascript stack composed of:

 MongoDB, NoSQL and Document Model Database

 ExpressJS, a framework to create web applications

 AngularJS, frontend web framework to create single page applications

 Node.js, a javascript Event Driven framework

4.1.4 3rd party dependencies & hosting environment

 Node.js > v6.x

 MongoDB > v3.2

4.1.5 Hardware specifications

Not available

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 27 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.1.6 Packaging

Not available

4.2 REWARD FRAMEWORK

4.2.1 Tool Overview

The Reward Framework provides a platform for content producers to form ad hoc teams needed for the

creation of a given item of media content, e.g., requiring multidisciplinary expertise, including video

production and editing capabilities, text writing skills, photography experience, etc. A number of pre-

defined contracts are available for selection and agreement among team members and content

distributors. Additional tools allow digitisation of different team members’ contributions, to register

them as digital assets and share rewards following their use by the content distributors. Smart contract

and distributed ledger technologies are used to independently enforce such contracts and transparently

and automatically account for generated revenues.

4.2.2 Tool application Programming Interfaces

APIs for:

 accessing information on distributed content from Recommendation module and store on

blockchain

 selecting contracts for use of digital assets in the Producer’s Web App

4.2.3 Technologies used

Several Docker containers which include services implemented using: Javascript, node.js, go

Blockchain platform

4.2.4 3rd party dependencies & hosting environment

AWS

4.2.5 Hardware specifications

Not available

4.2.6 Packaging

Docker image

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 28 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.3 TRULY MEDIA

4.3.1 Tool Overview

Truly Media is a collaborative platform that helps users’ aggregate, curate and verify news content. As

Truly Media provides useful functionalities for organising and browsing through news related content,

we expect to use it as a basis for the front end application CPN users will have for consuming the content

deemed (by the personalisation services) suitable for them.

4.3.2 Tool application Programming Interfaces

Truly Media operates as a front end, allowing users to organise and browse through content and is

connected with APIs of Social Media as Twitter, Facebook and Youtube to receive content in real time.

4.3.3 Technologies used

The front end is based on the Angular Fuse template. Java 8(Sping boot) and Node.js are used for the

backend. The front end is based on AngularJS 1.5.x and in particular on the Angular Fuse template.

4.3.4 3rd party dependencies & hosting environment

The project is hosted on a cloud platform. We use MongoDB database hosted on mLab, the frontend is

hosted on Amazon CloudFront, the backend on Heroku and we store the data on Amazon S3.

4.3.5 Hardware specifications

Truly.Media requires 2 GB of RAM and a dual core CPU environment. It is fully cloud hosted

(application and data).

4.3.6 Packaging

We use maven for packaging. It is configured with Jenkins for deployment management

4.4 USERMODELLING

4.4.1 Tool Overview

The user modelling is used to create and update user profiles for CPN users. Profiles contain an up-to-

date history of the user news’ consumption by collecting click-streams, topics of interests (automatically

extracted from news articles), demographics information and location data (when available). User

profiles play an important role in the success of the recommendation process since the profiles represent

the users’ information needs. The accuracy of each user profile affects the performance of the entire

recommender system.

4.4.2 Tool application Programming Interfaces

The module offers the following APIs.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 29 of 39

©Copyright ATC and other members of the CPN Consortium 2017

User-profile API: it is used to manage profiles (CRUD operation) for existing users.

4.4.3 Technologies used

Python, MongoDB (for storing user profiles)

4.4.4 3rd party dependencies & hosting environment

MongoDB

4.4.5 Hardware specifications

The amount of RAM needed is typically around 4-8gb per node.

4.4.6 Packaging

Docker image

4.5 TWITTER ANALYTICS - TRUTHNEST

4.5.1 Tool Overview

TruthNest is a platform that provides in real time very detailed analytics around any information relating

to Twitter. TruthNest returns detailed information around the activity, network and influence of any

user. It can also provide analytics on the engagement and virality of specific posts, as well as timelines

illustrating the unfolding of specific events as reported by posts with the greater engagement.

4.5.2 Tool application Programming Interfaces

TruthNest may receive as input either the url of a Twitter post, the identifier of a specific Twitter user,

or a free text query representing a topic under investigation. Twitter can provide responses in json format

encapsulating all types of supported analytics.

4.5.3 Technologies used

The backend in written in Java 8. The frontend uses PHP and Javascript libraries (jQuery, D3 etc).

4.5.4 3rd party dependencies & hosting environment

We use MongoDB and MySQL databases. The project is hosted on ATC premises on an Ubuntu 14.04.5

LTS server.

4.5.5 Hardware specifications

The platform requires at least 4 GB of RAM and a dual core processing environment to run smoothly.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 30 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.5.6 Packaging

We use maven for packaging. It is configured with Jenkins for deployment management.

4.6 PERSONAL DATA RECEIPTS

4.6.1 Tool Overview

Personal Data Receipts are a tool compliant with GDPR Articles on Information Notice and aiming to

simplify users’ understanding of privacy policies, while providing them with a human-readable record

on what personal data are collected, the purpose of use they have consented to, and for how long given

data will be stored. PDRs are an instrument to allow users to ask for data removal or for executing other

digital rights. Integration with blockchain is leveraged to provide a non-repudiable receipt record, useful

for future verification that personal data are used according to the user’s wishes. This tool will be tested

during the project to gather user feedback for further refinement and with adopters (e.g., content

distributors) in order to derive recommendation for standardized PDRs.

4.6.2 Tool application Programming Interfaces

APIs for:

 create PDRs, interact with User Modelling module to fetch user profile

 store PDR hash on a blockchain

 search given PDR on a blockchain

 revoke PDRs

4.6.3 Technologies used

Several Docker containers which include services implemented using: Javascript, node.js, go

Blockchain platform

4.6.4 3rd party dependencies & hosting environment

AWS

4.6.5 Hardware specifications

Not available

4.6.6 Packaging

Docker image

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 31 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.7 RECOMMENDER

4.7.1 Tool Overview

The current state of the art techniques for recommending items are based on two main areas: content

based (that relies on good semantic modelling/feature extraction and selection on the items to be

recommended) and collaborative filtering techniques (that are essentially domain-independent and take

into account network metrics based on emerging similarity graphs of users and items). Our system uses

a hybrid approach that uses variable proportions of the mentioned techniques for each user learning

(using Machine Learning techniques) from explicit and implicit feedback given by the users themselves:

clicks, ratings, sharings, etc. The system is customizable for including content-delivery strategies’

optimization: multichannel and date/time optimization (predicting the probability of interests at a given

time on a given channel) and includes mechanisms for fostering “serendipitous” discoveries.

The recommender exploits the features extracted from the document enriching modules: sentiment

extraction, user modelling, user feedbacks, and topic annotation.

4.7.2 Tool application Programming Interfaces

The module offers the following APIs.

Recommendation API: it is used to retrieve recommendation for a given user drawn from a catalog of

news items.

4.7.3 Technologies used

Python, MongoDB (for storing recommendation)

4.7.4 3rd party dependencies & hosting environment

MongoDB

4.7.5 Hardware specifications

The amount of RAM needed is typically around 16-32gb per node.

4.7.6 Packaging

Docker image

4.8 SEMANTIC LIFTING

4.8.1 Tool Overview

This module semantically annotates (semi-) structured data (namely data in tabular, hierarchical, or

attribute-value pair structure) and generates the corresponding Linked Data (in RDF format).

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 32 of 39

©Copyright ATC and other members of the CPN Consortium 2017

The module consists of an editor to define the rules that specify how Linked Data is generated, a

processor which actually generates the Linked Data and a validator that validates both the mapping rules

and the implementation and makes sure that high quality Linked Data is generated.

4.8.2 Tool application Programming Interfaces

The semantic lifting module may take as input a (relational) database (O/JDBC), a Web API or a file

which contain data in a table, CSV, XML, JSON or wikitext format. Other formats may be supported

but it has to be known so the implementation can be extended.

One can find examples of input data on :

 the website, http://rml.io/RML_examples.html

 the specification, http://rml.io/spec.html , or

 the unit tests of the implementation, https://github.com/RMLio/RML-

Processor/tree/ab26dac414692b3235164b271b376304869225ca/src/test/resources

One can run the module by providing 1. the data sources and 2. a mapping file (with the semantic

annotation rules described in RML). One can use the command-line-based version or the Web API. In

the latter case, the data and the mapping file are provided in a POST request. Afterwards, via a separate

request, one can get the results.

The mapping file may be edited manually or using the RMLEditor. The RMLEditor is a Web service

which one may use after requesting access to it. The consistency of a mapping file may be checked using

the RMLValidator. The RMLValidator is available as a command-line tool and takes a mapping file as

input and has a list of violations (if any) as output.

4.8.3 Technologies used

The implementation is in JAVA and it is available via the command line. There is also a wrap-up of the

JAVA implementation in Node.js which provides a Web API around the implementation. Both of them

are available with their source code, releases and Docker images.

4.8.4 3rd party dependencies & hosting environment

One should have Java (version 7 or 8) and maven (version 3) installed.

4.8.5 Hardware specifications

Not available

4.8.6 Packaging

There are docker images and the implementation can be used as a Java library.

http://rml.io/RML_examples.html
http://rml.io/spec.html
https://github.com/RMLio/RML-Processor/tree/ab26dac414692b3235164b271b376304869225ca/src/test/resources
https://github.com/RMLio/RML-Processor/tree/ab26dac414692b3235164b271b376304869225ca/src/test/resources

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 33 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.9 GENERIC TRAINING MODEL FOR RELATION EXTRACTION

4.9.1 Tool Overview

This module allows predicting slots to complete tuples of the form (subject, relation, and object), with

subject or object missing, and for a fixed set of relations (our current system is designed for those

relations defined in http://surdeanu.info/kbp2014/TAC_KBP_2014_Slot_Descriptions.pdf , but we

intend to extend that set, depending on the need of the content providers).

The module will use English data from Deutsche Welle as basis for the extractions.

Given that named entities are essential for the slot filling component, an additional component for

automated named entity extraction (based on publicly available training data) will be provided.

4.9.2 Tool application Programming Interfaces

API access to

 Enrich an input article with various standard NLP elements (named entities, POS tags, etc.), by

means of a Stanford CoreNLP server.

 Provide (subject, relation) as input, returning the matching object with confidence score, as well

as the passage in the article archive, based on which the prediction was made. Similarly for

input (relation, object), with subject as output.

4.9.3 Technologies used

Python, (sklearn for the prediction component, with a flask API)

Stanford CoreNLP

4.9.4 3rd party dependencies & hosting environment

Standard

4.9.5 Hardware specifications

Standard

4.9.6 Packaging

The code will consist of python packages; trained models will be available as binary files, and enriched

dataset will consist of json files.

4.10 TOPIC EXTRACTOR

4.10.1 Tool Overview

Domain independent terminological, taxonomical and ontological extraction from unstructured sources

using metrics and strategies based on statistical, linguistics and extra-linguistic features (e.g. text

http://surdeanu.info/kbp2014/TAC_KBP_2014_Slot_Descriptions.pdf

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 34 of 39

©Copyright ATC and other members of the CPN Consortium 2017

tagging, position, etc.). The text-extraction sub-module is able to extract text from heterogenous

documents including PDFs, web pages, ms-office files, xml, etc. It also provides the possibility of

extracting text from scanned PDF documents via state-of-the-art OCR technologies (tesseract v4.x). The

tool can be used to automatically build a domain terminology/ontology from unstructured sources that

can be later used for document annotation and retrieval; the terminological candidates are multiword

expressions that are filtered through different stages of scoring.

In the context of CPN it will be used to constantly enrich a list of emerging topics from news corpora

and annotating incoming news according to this topic list

4.10.2 Tool application Programming Interfaces

The module offers the following APIs.

Document API: it used to create document corpora by submitting text documents (docs, pdfs, etc.) or a

link to an online document (URL). The corpus will be then processed to extract the text from each

documents and store it for later elaborations.

Topic Extraction API: it is used to launch a topic extraction task on a previously created corpus. The

API will return an “OK” if the task is correctly submitted. The list of ongoing extraction tasks and their

completion status can be subsequently retrieved.

Topic API: it is used to manage (CRUD operations) the results of topic extraction tasks.

4.10.3 Technologies used

Python, MongoDB (for storing the text extracted from documents, list of topics and documents to topic

associations)

4.10.4 3rd party dependencies & hosting environment

MongoDB, Tesseract (if OCR is needed)

4.10.5 Hardware specifications

The module is thought for processing large quantities of data in an efficient way. However for very large

corpora it is recommended to run different containers with at least 8-16gb RAM.

4.10.6 Packaging

docker image

4.11 UPLIFTING/DEPRESSING ARTICLE CLASSIFIER

4.11.1 Tool Overview

Original definition: Classifying the stance of the view expressed in an article on a certain topic (e.g.,

political view, left- vs right-wing; or positive/neutral/negative in a more basic setting). This can be used

for the unsupervised perspective extraction.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 35 of 39

©Copyright ATC and other members of the CPN Consortium 2017

Given that no (or very little) opinionated text is available (articles themselves are fairly neutral; user

comment feature is minimally used), it was decided to abandon this module: without data, it would be

nearly impossible to train useful models, and if data is not generated in practice, applicability of such

models would be limited anyway.

The eventual application of this module is in balancing lists of suggested articles: a substantial fraction

of news items are typically viewed negatively (e.g., conflicts, disasters, accidents) and thus

“depressing”. To balance this, we need positive, or “uplifting” articles to be interspersed in a suggested

reading list.

The idea of this component is to build a text classifier, which takes as input an article, and classifies (or

potentially scores) the article as “depressing” vs “uplifting”. The definition of what exactly is “uplifting”

and “depressing” is part of the study that will be performed by developing this component. Given that

without a decent analysis of a first dataset, these definitions are hard to specify upfront, we will continue

to refine/define the exact component to be delivered as we go, to maximize both (a) feasibility as well

as (b) relevance for the content providers. The latter relevance was validated during the Brussels meeting

in March and follow-up calls. The feasibility largely depends on data availability, and particularly

labeled data. Since the latter is not yet available, we foresee a phased approach including collection of

annotation. Both task and dataset definition are currently under further investigation with Deutsche

Welle.

First step will be defining a development data set, to gather first uplifting/depressing annotations, thus

assessing the feasibility of the task in terms of data. In parallel, baseline text classifiers will be

developed.

4.11.2 Tool application Programming Interfaces

The prediction module will be accessible through a REST API, where a sentence will be provided as

input, and JSON output with the predictions returned (with a confidence score for each label, depending

on the final definition of the task).

4.11.3 Technologies used

Python (pytorch or tensorflow for the prediction component, with a flask API)

4.11.4 3rd party dependencies & hosting environment

Standard

4.11.5 Hardware specifications

Depending on the size of the dataset, training and prediction may require GPUs.

4.11.6 Packaging

The code will consist of python packages; trained models will be available as binary files.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 36 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.12 FRAME BASED SLOT-FILLING SYSTEM

4.12.1 Tool Overview

The eventual application of this module is to extract key features from articles in terms of the event(s)

they cover. For example, the system would identify whether an article talks about a “natural disaster”,

or a “political event”, or a “sports event”, etc. In addition, the important entities/organizations/locations

involved and what role they play would be extracted. This extraction will essentially fill the slots

answering ‘who?’, ‘what?’, ‘where?’, ‘when?’ questions. Having this information extracted for a series

of articles (potentially from different publishers) will help to identify whether articles talk about the

same or different events, and potentially allow to link articles together. This will prove useful in

aggregating news article into a feed of articles to read without significant overlap (which is especially a

risk if articles are coming from multiple publishers). It thus serves a building block for news

diversification and/or clustering into news stories.

The idea of this component is to build a so-called frame based system, which takes as input an article,

essentially takes a down-to-earth approach to understand what the article is about and capture it in a

‘frame’, which has a well-defined type/class and a set of slots that have associated a set of slot values.

Example of frame classes: events (deaths, awards and prizes, strikes, accidents, extreme weather),

recurrent_event (solar eclipse, charity campaigns, summer/winter time transition, expos, tournament),

with the following sample slots:

- event_death: slot_who, slot_how, slot_when, slot_where

- event_sportmatch: slot_team, slot_person, slot_sport, …

- event_charity: slot_name (e.g., “De Warmste Week”), slot_organizer, …

- event_strike: slot_company

The first step will be defining a development data set, to gather first annotations (esp. focusing on the

event types and associated slots), thus assessing the feasibility of the task in terms of data. In parallel,

baseline text classifiers will be developed.

4.12.2 Tool application Programming Interfaces

The prediction module will be accessible through a REST API, where a text document (an article) will

be provided as input, and JSON output with the extracted frame info (type of ‘event’ and the relevant

slots).

4.12.3 Technologies used

Python (Pytorch or Tensorflow for the extraction component, with a flask API)

4.12.4 3rd party dependencies & hosting environment

Standard

4.12.5 Hardware specifications

Depending on the size of the dataset, training and prediction may require GPUs.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 37 of 39

©Copyright ATC and other members of the CPN Consortium 2017

4.12.6 Packaging

The code will consist of python packages; trained models will be available as binary files.

4.13 SENTIMENT

4.13.1 Tool Overview

DS4Biz-Sentiment is a multiplatform, microservice based, trainable classification system aimed at:

 Polarity detection

 Complex opinion and sentiment extraction (via unsupervised techniques)

 Spam, hate-speech and flames detection

It automatically select the best performing machine-learning module from a (configurable via API)

family of models. It also offers an API to update the models incrementally by submitting new polarity

examples.

In the context of CPN it will be used to add meta-level information about the news articles to be later

exploited in the context of recommendation (e.g. recommend the right balance of negative/positive

articles on a given topic)

4.13.2 Tool application Programming Interfaces

The module offers the following APIs.

Training API: it is used to create and update sentiment extraction models. Models can be created from

scratch by submitting whole training sets or can be updated incrementally

Classification API: classifcation of documents by using one of the models created with the Training

API.

SentimentExtraction API: it is used to extract sentiment expression, in an unsupervised way, from given

documents.

4.13.3 Technologies used

Python, MongoDB (for storing the sentiment metadata associated to documents)

4.13.4 3rd party dependencies & hosting environment

MongoDB, Tesseract (if OCR is needed)

4.13.5 Hardware specifications

The module is thought for processing large quantities of data in an efficient way. However for very large

corpora it is recommended to run different containers with at least 8-16gb RAM.

4.13.6 Packaging

docker image

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 38 of 39

©Copyright ATC and other members of the CPN Consortium 2017

5 CONCLUSIONS

This deliverable has presented the work that has been performed in the context of tasks T3.1-3.3, of

work package WP3. Having as a starting point the user requirements, as depicted in deliverable D1.1,

“User Requirements Model", a set of components, APIs, and services, have been planned to be delivered

by the respective partners. These components, APIs, and services constitute the first version of the

platform infrastructure.

Each component has been individually described through a brief presentation of the provided

functionality. The description is accompanied by the API/service through which the component is

accessible/embeddable. In such a case, the API/service parameters, inputs, output, and API examples

are provided.

This deliverable reports the first version of the platform components, which will be integrated, by the

end of M10 (June 18). Subsequent versions of the platform components are expected to provide updated

versions of the currently available components, APIs, and services, along with possible new

components, APIs, and services, in order to adapt to possible new requirements and functionality needed

by the constantly evolving CPN platform.

 D3.1: Initial Design and APIs of Technology Bricks (v1.0) |Public

Page 39 of 39

©Copyright ATC and other members of the CPN Consortium 2017

6 REFERENCES

[1] CPN: D1.1 User Requirements Model

[2] CPN: D2.1 CPN Reference Architecture

