
Projectcpn.eu

Grant Agreement No.: 761488

D2.2: CPN Open Virtual Platform v1

CPN Platform v1 - Accompanying Report

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 2 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Work package WP 2

Task T2.3 – T2.4

Due date 30/06/2018

Submission date 29/06/2018

Deliverable lead ENG

Version 1.0

Authors Ferdinando Bosco (ENG), Vincenzo Croce (ENG)

Reviewers Fulvio D’Antonio (LiveTech)

Keywords CPN – Open Virtual Platform – Microservices – Deployment- Integration

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 31/05/2018 1st version of the deliverable with table of
contents

Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

V0.2 21/06/2018
draft version of deliverable for
contributions and feedback by partners

Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

V0.3 27/06/2018 Version for internal review. It includes
feedback and contributions from partners.

Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

Fulvio D’Antonio (LiveTech)

Chris Develder (Imec)

V1.0 29/06/2018 Final version Ferdinando Bosco (ENG)

Vincenzo Croce (ENG)

Fulvio D’Antonio (LiveTech)

Chris Develder (Imec)

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 3 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 761488.

This document reflects only the authors’ views and the Commission is not responsible for any
use that may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: DEM + R

Dissemination Level

PU Public, fully open, e.g. web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to CPN project and Commission Services

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 4 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

EXECUTIVE SUMMARY

 The CPN project foresees three major releases of the CPN Open Virtual platform that include
functionalities aligned with the requirements gathered for the three CPN pilots. Each platform
release includes specific functionalities, chosen after a process of evaluation and prioritization
of the user requirements.

Starting from the reference architecture document, delivered as D2.1, the first version of the
open virtual platform was implemented and is reported in this document. This version of the
platform consists of a series of modules named Technology Bricks and provided by CPN
partners in order to satisfy the user requirements expected for the first pilot iteration.

This document is the CPN Open Virtual Platform accompanying document, all the process of
installation, configuration and commissioning of the platform and related technology bricks
are described, over the approach and methodology followed to implement the features
necessary to satisfy the user requirements.

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 5 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

TABLE OF CONTENTS

1 INTRODUCTION... 9

2 PLATFORM IMPLEMENTATION ..10

2.1 Installation ... 11

2.2 Configuration .. 12

2.2.1 Docker private registry .. 12

2.2.2 CPN Catalog ... 13

2.3 Core components .. 15

2.3.1 API Gateway ... 15

2.3.2 Orchestrator ... 16

2.3.3 Message Broker ... 16

3 CPN TECHNOLOGY BRICKS ... 18

3.1 Deployment .. 19

3.2 Integration ... 20

3.2.1 Data schema ... 20

3.2.2 Documentation ... 22

3.2.3 Integration with core components ... 23

4 TEST AND COMMISSIONING ... 24

4.1 Unit test ... 24

4.2 Integratrion test .. 24

4.2.1 CONTRACT TEST .. 25

4.3 End-to-end test ... 25

4.4 Other tests .. 25

4.4.1 Scale testing ... 25

4.4.2 Resilience testing ... 26

5 CPN PLATFORM - 1ST PROTOTYPE DELIVERY ... 27

5.1 Approach and Methodology ... 27

5.1.1 Requirements prioritization .. 27

5.1.2 Mapping Requirements/Technology Bricks ... 28

5.1.3 Sprints ... 30

5.2 Results ... 30

6 CONCLUSIONS .. 32

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 6 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

LIST OF FIGURES

FIGURE 1: CPN STACKS IN RANCHER ENVIRONMENT ... 11

FIGURE 2: RANCHER HOST INFORMATION AND STATISTICS .. 12

FIGURE 3: RANCHER DEFAULT APPLICATION CATALOG .. 14

FIGURE 4: CPN APPLICATION CATALOG ... 14

FIGURE 5: CPN API GATEWAY GUI ..16

FIGURE 6: EXAMPLE DOCKERFILE FOR NODE.JS APPLICATION ..19

FIGURE 7: OUTPUT DATA SCHEMA OF A CPN TECHNOLOGY BRICK ... 21

FIGURE 8: OUTPUT EXAMPLE OF A CPN TECHNOLOGY BRICK .. 22

FIGURE 9: 1ST PROTOTYPE BASIC WORKFLOW .. 29

FIGURE 10: DEPLOYMENT OF CPN PLATFORM V1 .. 31

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 7 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

 LIST OF TABLES

TABLE 1: LIST OF CPN TECHNOLOGY BRICKS ...18

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 8 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

ABBREVIATIONS

API Application Programming Interface

ATC Athens Technology Center

CPN Content Personalisation Network

DigiCat Digital Catapult

e.g. Example given

ENG Engineering Ingegneria Informatica

etc. Etcetera

GB Giga Byte

GUI Graphic User Interface

Imec Interuniversity MicroElectronics Center

JSON JavaScript Object Notation

JWT JSON Web Token

RAM Random Access Memory

REST Representational State Transfer

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 9 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

1 INTRODUCTION

The main goal of CPN project is to realize a virtual platform in order to make available -to
media companies - innovative services and modules that combine content and personal data
to offer content personalization features.

The development of this platform started with the reference architecture document, released
as deliverable D2.11 on February 28. This document contains all the guidelines and
recommendation to implement a powerful platform that satisfies all the needs of CPN project.

In this document, we report all the process of implementation and deployment of the first
version of the platform and the integration of technology bricks, as reported in deliverable
D3.12. This version of the platform is the first expected of a cycle of three iterations and is
offering a series of starting features in order to test the platform and the related module in a
pilot environment.

1 D2.1 CPN Reference Architecture v1.0.pdf - https://owncloud.cpn.lab.vrt.be/index.php/f/1741
2 D3.1 Initial Design & APIs of Technology Bricks _V1.0.pdf -
https://owncloud.cpn.lab.vrt.be/index.php/f/2548

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 10 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

2 PLATFORM IMPLEMENTATION

Following the reference architecture document, we implemented the CPN platform as a
microservices architecture based on a Container Management Platform and in particular
Rancher v1.63.

Rancher is an open source software platform that enables organizations to run and manage
Docker container in production environment.

Rancher takes in raw computing resources from any public or private cloud in the form of
Linux hosts. Each Linux host can be a virtual machine or physical machine. Rancher does not
expect more from each host than CPU, memory, local disk storage, and network connectivity

Rancher implements a portable layer of infrastructure services designed specifically to power
containerized applications. Rancher infrastructure services include networking, storage, load
balancer, DNS, and security. Rancher infrastructure services are typically deployed as
containers themselves, so that the same Rancher infrastructure service can run on any Linux
hosts from any cloud.

Rancher includes a distribution of all popular container orchestration and scheduling
frameworks today, including Docker Swarm, Kubernetes, and Mesos and, in addition to these,
it supports its own container orchestration and scheduling framework called Cattle4.

Cattle is the orchestration framework chosen for the deployment of the first version of CPN
platform. This framework organizes the modules into stack (a group of services) and services.

There are two categories of stack:

 User stacks: include all the stacks deployed by the user

 Infrastructure stacks: include all the default stacks offered by Cattle framework

The figure below represents an example list of user stacks deployed on CPN host.

3 https://rancher.com/docs/rancher/v1.6/en/
4 https://rancher.com/docs/rancher/v1.6/en/cattle/stacks/

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 11 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Figure 1: CPN stacks in Rancher environment

2.1 INSTALLATION

In the following paragraph are described all the installation steps of the container
management platform.

The first step is to provide a Linux host with kernel version 3.10+ and at least 1GB of RAM.

The second step is to install a supported Docker version5. To install Docker follow the official
guidelines.6

In our configuration, we provide a virtual host with CentoOS 7 (3.10.0), 8GB of RAM, 4x2.5ghz
processors, 20GB of disk and Docker 18.0.

The Rancher platform v1.6 is runnable directly vie Docker container:

$ sudo docker run -d --restart=unless-stopped -p 8080:8080 rancher/server:stable

.... Startup Succeeded, Listening on port...

The default port for Rancher UI is 8080, so it is available on http://<SERVER_IP>:8080

Now the container management platform is available and we can proceed to the host
configuration.

5 https://rancher.com/docs/rancher/v1.6/en/hosts/#supported-docker-versions
6 https://docs.docker.com/install/linux/docker-ee/ubuntu/

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 12 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

2.2 CONFIGURATION

After Rancher installation, it was possible to create a Rancher instance directly via web UI.7

The first step was to create an administration user with the permission to create a new
environment. As already discussed for this release of the platform Cattle was used as
orchestration engine on the default environment.

The second step was to associate a physical or virtual host to new Rancher environment. In
CPN platform the host used is that described in the installation paragraph.

Once associated the host, Rancher start to monitoring this host and all the information was
provided through the UI as shown in the figure below:

Figure 2: Rancher host information and statistics

Now the Rancher environment is ready to deploy CPN modules, divided into stacks, as Docker
container, including both core components and technology bricks.

2.2.1 Docker private registry

Docker makes available to all the community a public repository, named DockerHub8, with
100.000+ apps, official and unofficial.

7 https://rancher.com/docs/rancher/v1.6/en/quick-start-guide/
8 https://hub.docker.com/explore/

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 13 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

From DockerHub, we can retrieve the basic images for our platform (e.g. MongoDB or Node.Js
official images) but for the modules developed by the partners, we need a private Docker
registry.

Rancher allow integrating a private registry and using it as repository for platform containers,
accessible only for users of CPN. In this version of the platform the registry was deployed as
Docker container in the same host and is available at address: http://xxx.yyy.32.194:5000

In order to make available a module within the CPN platform you need to push your Docker
image into this private registry.

$ docker push xxx.yyy.32.194:5000/myapp:version

It is mandatory to tag the image with private registry URL before to push it.

The registry is now not under TLS and therefore needs to be added as an insecure registry in
the Docker configuration. In order to make this, edit the daemon.json file, whose default
location is /etc/docker/daemon.json on Linux or C:\ProgramData\docker\config\daemon.json
on Windows with the following content:

{ "insecure-registries" : ["xxx.yyy.32.194:5000"]

You can verify if the registry is setted as insecure with:

$ docker info

Insecure Registries:
 xxx.yyy.32.194:5000
 127.0.0.0/8

Following version of the platform should provide a dedicated host for the private registry
under TLS connections.

2.2.2 CPN Catalog

The Rancher platform makes available a series of applications through its catalog. In the figure
below an example of Rancher’s catalog.

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 14 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Figure 3: Rancher default application catalog

An additional feature of Rancher is the possibility to create your own application catalog. This
catalog is a sort of marketplace for your modules, provided with description, technical
documentation and usage guidelines, from which the user can choose the modules to be
installed in the platform.

In the figure below the CPN catalog:

Figure 4: CPN application catalog

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 15 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

2.3 CORE COMPONENTS

Even if the CPN Platform is open and extensible and the modules installed may be replaced or
improved according to customer needs, some core components are necessary to have a
basic configuration and deployment.

As described into the Reference Architecture, the CPN microservices architecture implies the
application of API Gateway pattern and two kind of communication systems: messaging and
orchestration. In order to satisfy these architectural requirements three core components have
been deployed within the platform:

 API Gateway

 Orchestrator

 Message Broker

In the following paragraphs these components are described in detail.

2.3.1 API Gateway

The API Gateway represents the access door for external application that want to exploit CPN
innovative services.

This component serve all different client applications (mobile, web, etc.) and centralize some
middleware functionalities as authentication, logging, security, etc.

In CPN platform a microservices API gateway, based on Express.js framework has been
deployed, namely the Express Gateway module.

Express Gateway is open source and distributed under Apache 2.0 License9 and it was
chosen for its ease of use and flexibility and in particular for the following benefits:

The CPN API Gateway was extended with a GUI that permit to view all documented APIs and
test them directly via browser.

9 https://github.com/moby/moby/blob/master/LICENSE

 Configurable via YAML

 Language agnostic

 Extensible with any Express.js middleware

 Run anywhere with Docker

 Many authentication and authorization method supported (e.g. JWT)

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 16 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Figure 5: CPN API Gateway GUI

2.3.2 Orchestrator

Orchestration is the traditional way of handling interactions between different services in a
service-oriented architecture. With orchestration, there is typically one controller that acts as
the “orchestrator” of the overall service interactions.

We developed a customized orchestrator module and deployed it as Docker container, to get
the following benefits:

The orchestration module cover all the synchronous processes inside the platform, exploiting
the APIs exposed by technology bricks.

2.3.3 Message Broker

The messaging pattern allow the microservices to collaborate minimizing their coupling and
improving the flexibility of the platform.

To implement this pattern a message broker is needed. A message broker (or queue
manager) is a software where queues can be defined, applications may connect to the queue
and transfer a message onto it.

In CPN platform, Apache Kafka and Zookeeper have been chosen to allow messaging and
asynchronous communication among microservices.

Apache Kafka and Zookeeper are both open sources and distributed under Apache 2.0
License.

 unbundling between gateway and orchestration functionalities

 no violation of the single responsibility principles

 more flexibility to implement new processes and scaling APIs

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 17 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Apache Kafka is a distributed streaming platform that allow publishing and subscribing
streams of records, very similar to a standard message queue. Kafka is deployable as a cluster
of one or more servers that stores stream records in categories called topics. Each record
consists of a key, a value and a timestamp.

Zookeeper is a software tool for distributed services coordination. In particular, it is a service
for maintaining configuration information, naming, providing distributed synchronization, and
providing group services.

Both the modules were deployed into the CPN platform as Docker containers and are
available to all the other modules.

Details on integration with the CPN core components will be described in Section 3.2.

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 18 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

3 CPN TECHNOLOGY BRICKS

The CPN technology bricks are a series of modules developed by CPN partners to offer a
series of innovative services for news recommendation.

 As defined into D3.1: Initial Design and APIs of Technology Bricks10 they are divided into three
layers as following:

Layer Technology Bricks Partner responsible of the
provision

Content

Semantic Lifting Imec

Relation Extraction Imec

Topic Extractor LiveTech

Uplifting/Depressing Article Classifier Imec

Frame Based Slot-Filling System Imec

Sentiment LiveTech

User

UserModelling LiveTech

Reader's App ATC

Personal Data Receipts DigiCat

Mapping

Producer's App ENG

Reward Framework DigiCat

Twitter Analytics ATC

Recommender LiveTech

Table 1: List of CPN Technology Bricks

In order to be included into the CPN platform, all these modules need to be implemented as
microservices and containerized with Docker.

Furthermore, as already highlighted in Reference Architecture, each microservice have to
manage its own database, must be autonomous and must be accessible for communication
with other microservices through REST interfaces or through Messaging.

In the following paragraphs are described the guidelines for container deploying and
integration with the core components of CPN platform.

10 https://owncloud.cpn.lab.vrt.be/index.php/f/2548

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 19 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

3.1 DEPLOYMENT

As already discussed in the previous paragraphs, to be deployed into the CPN platform a
module must be provided as Docker container and the Docker version required is almost
v1.12.

To start the containerization a complete guide is provided on Docker documentation11.

In order to create a Docker container we need a Dockerfile:

Figure 6: Example Dockerfile for Node.js application

After the creation of a Dockerfile, to deploy a module into the CPN platform, three steps are
needed:

11 https://docs.docker.com/get-started/part2/

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 20 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

After these steps, it will possible to deploy the module into the CPN platform directly through
the Rancher web UI.

If a module is stand-alone and it does not need to communicate with other modules, a stack
can be created in a simple way starting from the image pushed on the platform Docker
images registry.

In case of modules that need to be integrated with others, integration guidelines must be
followed.

3.2 INTEGRATION

3.2.1 Data schema

To better understand how the modules interact with each other for each Technology Bricks
was released a document with input/output data schema and shared with other partners.

Each document include the format for input/output data as needed and a data example.

The following figures represent the data schema document of a CPN technology Brick:

 Build an image of the container

$ docker build -t myapp .

 Tag the image with private registry URL

$ docker tag myapp xxx.yyy.32.194:5000/myapp:latest

 Push the image into the CPN private registry

$ docker push xxx.yyy.32.194:5000/myapp:latest

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 21 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Figure 7: Output data schema of a CPN Technology Brick

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 22 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Figure 8: Output example of a CPN Technology Brick

3.2.2 Documentation

For a complete integration of a module into the CPN platform, it is crucial to have clear
documentation for each service that the module implements, whether it is exposed via API or
communicating through message broker.

In the case of APIs, a standard format for the documentation is Open API12 and in particular, a
YAML file with Open API specification Swagger v2.0 is needed.

Since we will have multiple API in CPN platform to better identify the relevant module and to
not create overlapping among them, a module must follow this naming convention:

/{module-identifier}/{service-name}/

All the APIs documentation is included in the API Gateway swagger.yaml to have a complete
description of all platform modules and in order to show the documentation in the API
Gateway GUI.

In the case of module that communicate via message broker, a common pattern is to send the
text of the message using a structured and easily parseable format, preferably JSON. Each

12 https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 23 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

consumer can therefore receive the message, extract and parse the content of the body and
access/process the information of interest.

3.2.3 Integration with core components

Thanks to sharing of data schema information and interfaces documentation all the
Technology Bricks can collaborate among them.

The core components deployed within the CPN platform allow this collaboration adding an
inter-communication level.

To interface a module to external application through API Gateway it is enough expose the
documented APIs and define a new routing in the gateway configuration file.

In case of integration through the orchestrator, a new process definition is needed.

Finally, in case of integration trough the message broker, the module itself must be implement
the rule of integration and setup as environment variable the local address of Kafka.

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 24 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

4 TEST AND COMMISSIONING

A microservices architecture brings many benefits such as the ability to independently deploy,
scale and maintain each component and parallelize development. However, it needs new
testing strategies to be defined, in a different way respect of monolithic approach.13

A microservices architecture builds software as suites of collaborating services, so it is
important testing the architecture starting from the single service (Unit test), proceeding with
their collaboration and integration (Integration Test) and ending with testing the entire
functionalities (End-to-end test)

4.1 UNIT TEST

A unit test exercises the smallest piece of testable software in the application to determine
whether it behaves as expected.14

For any test to be effective, you first have to find the boundaries of that test. The goal of the
test is to verify all behaviour inside the “black box” of the test boundaries by manipulating the
inputs to the black box, and verifying that the black box for each set of inputs produces the
correct output.

In order to reproduce input conditions that come from side effects it is necessary to implement
function stubs, also called mocks. Many test frameworks and tools help to implement the
function stubs15

It is worth noting that unit testing alone does not provide guarantees about the behaviour of
the system. We need other types of testing for microservices as integration and contract tests.

4.2 INTEGRATRION TEST

An integration test verifies the communication paths and interactions between components to
detect interface defects.16

Verification of the services that have been individually tested must be performed. This critical
part of microservice architecture testing relies on the proper functioning of inter-service
communications. Service calls must be made with integration to external services, including
error and success cases. Integration testing thus validates that the system is working together
seamlessly and that the dependencies between the services are present as expected.

13 https://martinfowler.com/articles/microservice-testing/
14 https://martinfowler.com/bliki/UnitTest.html
15 https://medium.com/@nathankpeck/microservice-testing-unit-tests-d795194fe14e
16 https://www.techopedia.com/definition/7751/integration-testing

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 25 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

4.2.1 CONTRACT TEST

An integration contract test is a test at the boundary of an external service verifying that it
meets the contract expected by a consuming service.17

Contract testing should treat each service as a black box and all the services must be called
independently and their responses must be verified. Any dependencies of the service must be
stubs that allow the service to function but do not interact with any other services. This helps
avoid any complicated behaviour that may be caused by external calls and turn the focus on
performing the tests on a single service. A “contract” is how a service call (where a specific
result or output is expected for certain inputs) is referred to by the consumer-contract testing.
Every consumer must receive the same results from a service over time, even if the service
changes. There should be the flexibility to add more functionality as required to the
Responses later on. However, these additions must not break the service functionality. If the
service is designed in this manner, it will stay robust over longer durations and the consumers
will not be required to modify their code to take into account the changes made later on.

4.3 END-TO-END TEST

An end-to-end test verifies that a system meets external requirements and achieves its goals,
testing the entire system, from end to end.18

End-to-end testing verifies that the entire process flows work correctly, including all service
and DB integration. Thorough testing of operations that affect multiple services ensures that
the system works together as a whole and satisfies all requirements. Frameworks like
JBehave19 help automate functional testing by taking user stories and verifying that the system
behaves as expected.

4.4 OTHER TESTS

Besides the aforementioned tests, that could be functional tests (i.e. testing the functional
aspects of the systems) another important class of tests is the one addressing the problems
connected to the global behaviour of the systems in usage contexts for evaluating non-
functional properties such as the resilience of the system, load testing and response time.
Such tests can be broadly classified as being “non-functional” tests and, in microservices
architecture, are often run both in test/preproduction environments and continuously
executed and monitored also in production environment (the so-called “shift-right testing”
depicting a situation in which the “production” environment is represented as the last
environment on the right in an architecture diagram).

4.4.1 Scale testing

In a microservices application, there may also be supporting services or resources that
operate faster or slower, depending upon total application traffic or the state of the resource.

17 https://martinfowler.com/bliki/ContractTest.html
18 https://martinfowler.com/bliki/BroadStackTest.html
19 http://jbehave.org/

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 26 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

As an example, if a caching layer is present in the application topology, calls to data may run
slower early in the operation of an application. That is because not much data is cached yet,
so the application has to make calls into a relatively slower database. Later in the operation of
an application, calls to data may run much faster, because most data can be retrieved in a call
to the caching layer rather than requiring a call to the database. In some respects, it is
probably better to think of a microservices application as a dynamic environment with
constant change occurring. It is critical to go beyond simple functionality testing and
implement load testing to observe how well the application performs when a high number of
calls are made to services, or large amounts of data are transferred on the network between
individual services. Again, the network will often be the bottleneck. Load testing will expose
parts of the application that are not designed to scale and can prevent meltdowns associated
with high amounts of user traffic in production. Do not be tempted to have a few colleagues
run some tests on the application and call that load testing. There are a number of
sophisticated load-testing solutions available, and they excel at generating enough virtual
traffic to truly test how well an application stands up to heavy load.

4.4.2 Resilience testing

Microservices applications operate on an endlessly evolving infrastructure environment, and
sometimes portions of those environments may encounter failures. For example, individual
servers that are running part of a specific service may crash or become unavailable.
Alternatively, network segments may stop reliably passing traffic. Larger aggregations of
resources (e.g., entire racks or even entire data centers) may stop working.

Microservices applications must be resilient in the face of infrastructure failures. However,
production operation—especially during heavy heavy load—is the wrong time to evaluate just
how resilient your application is. An appropriate approach to evaluating application resilience
is to test whether it can continue operation if the underlying resources fail. Netflix pioneered
the practice of suddenly removing portions of an application’s infrastructure, or portions of the
application itself, and evaluating how well the application performed. Netflix dubbed this (now
open source) tool for sudden, random resource destruction Chaos Monkey.

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 27 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

5 CPN PLATFORM - 1ST PROTOTYPE DELIVERY

The first delivery of CPN platform is probably the most important because it includes the
delivery of core components and the first deployment and integration of technology bricks.
Moreover, first version of the pilots applications will rely on this version of the platform for their
execution.

In this paragraph, the process followed to release the first prototype of platform is described.

5.1 APPROACH AND METHODOLOGY

In order to implement and delivery the CPN platform, starting from the bases provided by the
already mentioned deliverables, d2.1 Reference Architecture and d3.1 Technology Bricks, an
agile methodology and in particular the Scrum framework was applied.

A 3-steps process was defined: two starting activities steps and one cyclic step for task
development.

5.1.1 Requirements prioritization

The first step of the process was the requirements prioritization. In this phase starting from the
list of requirements expected for the 1st pilot iteration, as described in d3.1, the media partners
(VRT, DW, DIAS), that in the case of the Scrum methodology assumed the role of Product
Owners, gave a priority for each user requirement expected. The result of this activity was an
ordered list of requirements, named Prioritized Backlog.

Below the Prioritized Backlog:

1. UR- UP1.2 - The system should create/refine interests based on the user’s consumption
habits

2. UR- UP1.6 - The system should assign preferences (1-5) to categories based on the users
behaviour

3. UR- AF4.1 - The system should be able to personalise news from/for the CPN media
partners (VRT, DIAS, DW)

4. UR- UP9.2 - The system should require informed and explicit consent for processing of
personal user data, beyond those required for the provisioning of the agreed service

5. UR- UP9.1 - The system must provide transparent, simple and easy-to-understand
information on what user data are collected, for what purpose and how they are stored

 Requirements prioritization

 Mapping Requirements/Technology Bricks

 Sprints

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 28 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

6. UR- UP1.8 - The system must allow users to completely turn off the personalisation
algorithm and receive content as is and vice versa

7. UR- UP3.2 - The system should create/refine time frames based on the user’s
consumption habits

8. UR- AF2.4 - The system should show users only a limited number of items at once

9. UR- UP5.2 - The system should allow the user to set a home/main interest location

10. UR- AF7.2 - The system should include guided feedback for specific elements of the
system, allowing users to (help) improve it

11. UR- UP1.4 - The system should refine the user’s interests through frequent interaction with
the user (talkback)

12. UR- UP3.3 - The system should refine the user’s time frames through frequent interaction
with the user (talkback)

13. UR- AF2.5 - Once all articles proposed have been consumed, the system should only offer
more content upon request by the users

14. UR- UP1.7 - The system should allow users to assign and change preferences (1-5) to
categories themselves

15. UR- UP3.1 - The system must allow the user to choose a preferred time frame or frames to
consume content

16. UR- UP3.5 - The system must allow the user to postpone a time frame for a chosen
amount of time.

17. UR- UP3.6 - The system must allow the user to ignore a time frame completely

18. UR- AF3.4 - The system should be able to offer both news content and entertainment

19. UR- AF3.5 - The system should be able to offer both locally and globally relevant content

20. UR- UP2.7 - The system should allow users to share content from the CPN system to social
networks

21. UR- AF4.2 - The system should allow for additional content sources, outside the
consortium

22. UR- AF1.5 - The system should allow users to choose favourite sources

23. UR- AF3.8 - The system should allow users to filter content by language

5.1.2 Mapping Requirements/Technology Bricks

The second step after the definition of Prioritized Backlog was mapping between these
requirements and Technology Bricks. This phase involved both media and technical partners,
which, in the Scrum Framework, represent the Scrum Team.

The Technology Bricks expected in this phase are the following:

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 29 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

 User Modelling (LiveTech)

 Recommender (LiveTech)

 Producer’s App (ENG)

 Reader’s App (ATC)

 Personal Data Receipts (DigiCat)

 Relation Extractor (Imec)

Starting from this list of a basic workflow was created to define the process for their
integration within the platform. The workflow includes the interaction among modules and the
data exchanged.

Figure 9: 1st Prototype basic workflow

Once it became clear how all the components were integrated with each other, the
requirements were transformed in tasks and mapped with related Technology Bricks.

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 30 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

5.1.3 Sprints

The third step was a cyclic one. In fact, after the starting steps, following the Scrum
Framework, a series of sprints was defined.

Each sprint duration was of two weeks and each sprint consisted of:

The sprint planning is the starting phase of a sprint. During this activity, the tasks to be
completed in the sprint are selected.

The sprint execution is the second phase, which continue for all the duration of the sprint (two
weeks). During this phase, the tasks are executed and completed.

The sprint review is the final phase of the sprint. In this phase tasks completed and not are
discussed. The completed tasks are demonstrated by the Scrum Team. The Scrum Team also
discusses what went well during the Sprint, what problems it ran into, and how those
problems were solved. Finally, the sprint review provides valuable input to subsequent sprint
planning.

5.2 RESULTS

The first platform delivery includes some of the requirements expected for the first pilot
iteration, the overall requirements set will be completed in next two months.

The main goal of this version of platform was demonstrate the potentiality of micorservices
architecture and in particular of the architectural choices made for CPN.

All the core components and the Technology Bricks expected for the first pilot were deployed,
integrated and tested successfully and all the services were documented and exposed
through the API Gateway.

The result of this deployment is represented in the figure below:

 Sprint planning

 Sprint execution

 Sprint review

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 31 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

Figure 10: Deployment of CPN platform v1

More in detail, the following functionalities were implemented:

 Signup and login system

 Authentication and authorization system managed by API gateway with JWT tokens

 Background process for scheduled contents extraction from media partners (DW, VRT,
DIAS)

 Background process for content analysis and recommendation process

 Basic recommended system and news visualization

 Collection of user interests and activities

 Production of User Data Receipts

 Analysis and extraction of additional information from contents

 D2.2: CPN Open Virtual Platform v1 (V 1.0) | Public

Page 32 of 32

© Copyright Engineering Ingegneria Informatica and other members of the

CPN Consortium 2018

6 CONCLUSIONS

This document represents the report of all the activities conducted for the release of the first
version of CPN Open Virtual platform.

The CPN platform v1 was packaged and it is available for the partners in internal repository.

In order to test the platform and verify the status of delivery as described in this report, the
following software prototypes are available to internal partnership:

The next activities will be focussed on Technology Bricks and platform improvements, in order
to satisfy the complete set of all the requirements of both first pilot execution (planned for
early September) and the second version of the platform (planned for the end of May 2019.

 CPN Microservices Platform: container management platform (see figures 1-4)

 CPN API Gateway: gateway with APIs for the client applications (see figure 5)

 CPN Microservices Registry: public registry of versioned Technology Bricks

 Test Client Application

